$<
\

cobolsript
Devel ope

cobsdr ifPevel @peGui de

Copyright ©19962017 Matt Dean All Rights Reserved.

T

Copyright ©19962017 Matt DeanAll Rights Reserved.

This manual and its entire contents are copyrighted material. No part of this manual may be reproduced in any foearws, by any
either electimic or mechanical, including photocopying and recording, for any purpose without the express written pitatission of
Dean Information contained herein is subject to change without prior notice. All names and data in this manualexeefittitious
where otherwise noted. The software described in this manual is furnished under a license agreement. The sofare may be us
copied only in accordance with the terms of the agreement.

The tcaboktnr iopt 6 i s a r dMgtiDeandt €éd ot hademaokuct names, including but
, OVACE Maintenance Wor letectmademaks af M&tDeanade mar ks or regi st

Microsoft Windows and M3OS are registered trademarks of Microsoft Corporation.
Linux is a registed trademark of Linus Torvalds.

FreeBSD is a registered trademark of FreeBSD Inc. and Walnut Creek CDROM.
SunOS, Solaris, and Sun are registered trademarks of Sun Microsystems, Inc.
SQL*Loader and Oracle are registered trademarks of Oracle Corporation.

All other brand and product names mentioned herein are trademarks or registered trademarks of their respective holders.

Matt Dean
PO Box 6066
Chattanooga, TN 37401

Phone: 4238887475
World Wide Webh wwwcobolscripting.cloud

Enjoy your programming.

http://www./

Tabl

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

e of Content s

Introduction to CobolScript/ | nstal l ation I nsltructionsééé

Cobol Script Featuresééééé. é6éée. é¢éééé.

About this Manual éééééé. ééééée.2éééeée. é

InstalingCob ol Scriptééééeé. ééééée. ééédéé. ééé

Getting Started with CobolScripté . . ééé. éééeéé. é e é
Creating and Editing Cobol Scri®t Prog
Running Cobol Script from the CHIOmmand
Running CobolScriptininteractMo d e . . é éé. ééé. é él4é é é

Running Cobol Script from a Webl7Ser ver
CobolScripPLanguage Constructséé. . églééeéeéeé.
Literals and Literal Keywor ds.2léé. ééé
Variablesééééééééé. .. éééé. ¢éémée. é. éé
Dataand Copybook FilesééééeééeéeééeéeHeééceté.
Expressions and Conditionsé. é. ¥éeé

File Processing and |1/ Oééeéééésé
Describing Files and Defining 43a

Opening Fileséé...ééeéé. écéeéée.4q8eééeé. éé
Clos ng Fileséé...ééééée. éééee. é6é6d3¢é. éecée.

Reading Record
Overwriting a
Appending Reco
Writing to a F
Rel ative and A
Rel ati onal Dat

,,,,,,,,,,,,,,,,,,

I

s to an Existi®g File
e by Updating ®Rxi
olute File PosH®3t i
ase Interactiob w
Buil di Web Based Systemseéeécé@Beécecéeé
I nter a ing with a Web Server @&nd Web
Creathng Virtual HTMLéEéEéEééeééééeéeecoBeéeéé
Creating an HTML For mééééééééeabeééecéeé
Capturing I nput Data from a We@ Pageé
DI SPLAY and DI SPLAYLFéééeéeecécaBeéeéeeeée

Retrieving Web Pages. ... éééeéé.@eéeéeé. ¢

(@]
—~+Q

Network and Internet Programming Using CobolScripté . é é . é71
Transferring Files using FTPé.71. ééééé

Using Email Commandseeéeeeceeeer. .eeee

Using TCP/ I P Commandsééééeééécéethécécée

Advanced Internet Programming Techniques Using CobolSipt®.. 83

ééeeéeée.
eeée.

rams é é€
Line.

and E

ééé.
é. éééé

7

,,,,,,

rrrrr

Br ows

7z
,,,,,,
z

s 4 4 oz

Chapter 8

Chapter 9

Appendixes

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H
Appendix |

Environment Variables. . ééé. ééé®lé. ééééé. éé
CGl Form Componentséééée. . eéecégpeéecéecéce.

Using Hidden FieldsééééeéeééeéééeeHéeeeeéeeéeé.
Sending Email from Cobol Script92Usi ng CGI
Using CobolScriptto Transrfiti | es éé. . é 6 é é ééééé98¢é. ..

Embedding JavaScript in Cobol S%%ript Progr

Programming Techniques and Advanced CobolScrip- e at ur €% é .

Designing a Modul ar Program. . é99ééééée. éééée
Mani pul ating Cobol Sceéepéé®&aéi alDlesééeéeéé

,,,,,

Advanced Cobol Script Features.102é. .. éé¢eée.

CS Professional CodeBrowserE, ®WppMaker E

Feature Requirements. . é. ééééééHe. eéééeé. éé
Using CodeBrowserééééeéécéeécéecéeernaéeéeeceé.
BuildingExecua bl es wi th AppMaker. éééeBBlg. éée6ééée. éé

Using the Cobol Script Control H®anel .. éééé

Language Referenceééééé. ééeééée.EBeéecée. eéééé
Function Referenceééeééc. ééécé.Bb@ééé. eééé.
CobolScripPConstr ai nt sééééé. é. . ééeée. éééldx. éé.

Sample CobolScriptPr ograms éééeééeée. . . éeé.1g€eéé.
CobolScripPPi ct ure Clauseséé. é. é. éecdlée. éeéeéeeée. é

CobolScripPBasi ¢ Program StructureéeédBgéée. éeéceé.

SettingUpODBCand ODBC Data Sources 196r Li nkMak
Using LinkMaker E Embed@PRrafessoqal.. 228 Cob ol Scr
CobolScripPEr r or Messages. . €ééée. éééRrl. eéééeé. é

Gl ossaryéééé. ééééé. ééééé. ééééé. ééééé. ébpéé. éé.

Indexéééeéee. eeeéé. eeeceé. eeecee. eeecee. cecec®b. ece

7

er
T

ICON KEY

A

Important point

Chapter

Il ntroduction t%o Cobol Scri
|l nstall ati on I nstructions

language. With it, you will be able to quickly develop and tbaseelsystems, interface

programs, and compact business applications. The natural syntax of CebbliSsippt

you to start programming productively 1in
least some exposure to other programming languages. This natural syntax, coupled with a variety c
network and internspecific commands, makes CobolSkigpeat alternative to more cryptic or

CobolScri;ﬁ is a powerful, easy to use, platform independent, ifiemdly programming

complicated network programming | anguages.
youdoll find that certain web programming ta
simple with CatidScript, and as a side benefit, your code will be more manageable and easier to
mai nt ai n. | f youdbve avoided web programmin

CobolScript can open the door to a whole new style of application developgmenafat can do
it with a relatively small effort.

CobolScript is available for Microsoft Windp®snOS, FreeBSB, and Linuk Any program

developed and tested on one platform can be almost seamlessly ported to another supported
platform. And like all web systems, CobolScript web apps can be executed from any machine that
has a compatible browser and can access the welntimgsCobolScript. For this reason, a well
coded, welbased CobolScript system will not require modification if client machines are changed or
upgraded, so long as the clients still have compatible browsersiastadledme change for

anyone who hdmad to modify applications with client frentls specific to their operating system.

Alternatively, a single web client can run different CobolScript applications that reside on separate
servers. By linking small applications that are located onseistars to one another, you can

create a complete web system, and the processing for this single, larger system will be spread acro
the servers. Figure 1.1 illustrates one possible architecture for such a system.

CobolScripfDevel oper é6s Gui de Pagel

Cobol Scri pt Features

—
| —
7
Web
\httpd\cgi-bin\ /nttpd/cgi-bin/ /httpd/cgi-bin/ /httpd/cgi-bin/
cobolscript.exe cobolscript.exe cobolscript.exe cobolscript.exe
% %
Linux SunOS FreeBSD

Figure 1.5 A multiserver CobolScript application

In addition to the standard language commands and the internet processing commands available in
CobolScript, other features provide the means to quickly and easily create \pitbga wide
range of functionality:

1 Internetworking commands such as FTPPUT, FTPGET, SENDMAIL, and GETMAIL for
transferring files and emails from within a CobolScript program.

1 File processing commands for reading and parsing botorimatiand detiited data
files.

1 Flexible naming syntax that allows underscores (_) and detshles (1Ised
interchangeably in variable names, to support both modern variable naming as well as
COBOL-style variable naming.

1 Advanced expression evaluator that doesaute explicit spaces between expression

components, even for subtraction operations, for programmers who are used to coding
mathematical expressions in C or similar languages.

Financial functions for calculating annuities and depreciation.
Scientificstochastic, and other higher math functions.
Metric to English and English to metric system unit conversion functions.

TCP/IP socket programming commands such as SENDSOCKET and
RECEIVESOCKET, for creating cliesgrver communications programs without web
srver software or FTP configuration.

1 DNS commands such as GETHOSTNAME for incorporating internet information
retrieval into programs.

1 PIC X(n)picture clause that automatically calculates variable size based on VA, UE claus
eliminating the need for timmensuming computations with FILLER variables, and an
implied version of PIC X(n) that allows the FILLER keyword and picture clause to be
eliminated entirely.

1 REPLICA variable declaration syntax that permits the sameagiedaa item to be used
in multiple group items.

Page? CobolScripfDevel oper é6s Gui de

= =4 -4 A

1 EXECUTE command for dynamic statement creation and execution.

1 Intelligent error messaging that displays brbased error messages when running
programs from a browser, and-teaged error messages whening programs from the
command line, thereby speeding the debugging process.

Using these CobolScript features, you can develop programs to get and save web pages to text files
transfer files via FTP, send simple emails, retrieve emails, accept detfa frage forms, create
virtual HTML documents, and perform various file input and output operations.

CobolScript Professional Edition also contains a number of enhancements that enable professional
development with CobolScript:

I CobolScript AppMakerwhich makes it possible to create executables from CobolScript
programs.

§ CobolScript CodeBrowSer browsebased utility to examine your code in colorized form.

I CobolScript LinkMaker a tool that enables you to directly embed SQL calls in your
CobolScript program to access any data source for which you have an ODBC driver. On
Unix platforms, LinkMaKeiis used in conjunction with UnixODBC, a freeware product.

1 The CobolScript Control Panel, a graphical administration tool accessible frolm your we
server machine (so long as both CobolScript and web server software are installed), for
accessing other CS Professional features, and for administering your CS Professional syster

1 Multidimensional array support.

About this Manual

Thi s de v eshauldsemwvedas both a guidedfor learning to program with CobolScript, and as
a reference for your dmyday programming. It should provide sufficient instruction for most
experienced programmers to learn to develop Cobapplipations; however gartain instances

you may wish to find additional information:

1 If you are completely new to the art of programming, you should probably familiarize
yourself with introductory programming principles as well. Understanding the basics of
programming witleduce the time it takes you to learn CobolScript.

1 If you choose to program web applications using CobolScript, you should be familiar with
HTML. HTML is relatively easy to learn, and many good web sites and books exist on the
topic, so it would be reduamt to include an HTML reference in this guide. A number of
OWYSI WYG8d (What You See |Is What You Get)
can assist you in prototyping your system and creating the HTML that will be displayed by
your programs. Ctlewww.download.coffor the latest freeware and shareware
WYSIWYG tools.

1 Although web programmimgaddressed in this guide, you may also choose to seek more in
depth coverage of the subject, if, for instance,arbackground information about CGI
or about concepts not in this manual, such as cookie creation using CGl scripting.

1 Ifyou are interested in providing moretresd user feedback than is possible with just CGlI
scripting, or you want to distributes® of your web served appl
client machines, consider learning more about an appropriate embedded language like

CobolScripfDevel oper é6s Gui de Page3

http://www.download.com/

JavaScript. These | anguagesd scripts ca
CobolScript programs, so yain @rovide redime, clienbased processing while still using
CobolScript. Our preferred cliside scripting language is JavaScript, since it loads and
executes relatively quickly, and will run on both Netscape Nasigdioternet

Exploref.

fyou are | ooking for books on any ovisuat he abo:
Quickstart Gugkries to be affordable, concise, readable for beginners but not overly simplified, and
filled with good examples. Peachpit Press is on the Wel.peachpit.com

|l nstalling Cobol Script

System Requirements

A Pentiurfi-compatible machine (166 MHz and higher preferred) is required for the ¥indows
Linux®, and FreeBSDversions of CobolScript, a Rif@cessor machine for the Sufi@Ssion.

32MB of RAMs recommended for CobolScript Standard, more for programs of substantial size.
64MB of RAM is recommended for G8xript Professional Edition.

Installing CobolScript on a Window8§-compatible machine

Step 1. Download CobolScript.

Create a directory such aDESKWARE or G:COBOLSCRIPT where you will keep

CobolScript and your CobolScript programs. Downloace{sgtfl that directory from the

Deskware Registered User Web Site. If you have downloaded a zip file (with the extension .zip),
unzip it using WinZip or a similar product. The cobolscript.exe file is the CobolScript interpreter

and he .cbl files are the sample CobolScript programs. As you have already discovered because yc
are reading this, this manual is the file comanual.pdf, and requires that you have a free copy of Adol
Acrobat Read®&rversion 4.0 or higher, installed on goorputer to read and print it.

Step 2. Install CobolScript.

No special configuration is required for CobolScript to run. However, we recommend that you
modify your PATHenvironment variable in your AUTOEXEC.BAT file to point tddbation of

the CobolScript engine. To do this, first save a copy of yolrAlTOEXEC.BAT file to a

backup file such as BUTOEXEC.BAK, then open AUTOEXEC.BAT in a text editor such as
notepad, and modify the SET PATH= line. For example, ifayioeriAUTOEXEC.BAT file
reads:

SET PATH=C:\ MOUSE;%PATH%;C:PP\ BIN\ WIN32
you would change it to:
SET PATH=C:\ MOUSE;%PATH%;C:PP\ BIN\ WIN32;C: \ DESKWARE

if you have saved the CobolScript engine to\A\BESKWARE directory.

Paged CobolScripfDevel oper é6s Gui de

http://www.peachpit.com/

Step 3. Run CobolScript.
CobobBcript can be run from the command line. Start &ndJprompt, and type:

cobolscript.exe

to run CobolScript and see the command line options. To run a specific program from the
command line, type:

cobolscript.exe <program - name>

where <programame> ighe name of the program you wish to run, along with a path if the
program is not in the current directory. For example:

cobolscript.exe test.chbl
cobolscript.exe .. \testdir \test.cbl

For more information on running CobolScript from the command line, turn to the next chapter,
Getting Started with CobolScript

If you plan to do Web and CGI development, you will probably want to put CobolScript in your
web serverods OGuadliliyedtthosybdinroe d thornyh ehasa meg g
c\ httpd\ cgibin for the OmniHTTPd web server. Just place the cobolscript.exe file in this

directory. See the section tilReshning CobolScript from a Web Server and Browsier

Chapter 25etting Started with CobolScript

I f you dondét al OnmnidTIps difraeware davelopemdntlity web seevar for
Windows 95/98/NT". Search the web for 0Omni HTTPdG6 t

Step 4. Configure ODBC on your computer.

If you have CobolScript Professional Edition and you want to access a database usirfg, LinkMaker
you will need to set up an ODBC data source on your computer. Refer to Appendix H for complete
instructions on how to do this.

Installing CobolScript on aLinux®, SunOS/Solaris®, or FreeBS[> machine

Step 1. Download CobolScript.

Create a directory such as /deskware or /cobolscript where you will keep CobolScript and your
CobolScript programs. Download the file(s) to that directory from the Deskware Registered User
Web Site. If you have downloaded the complete i, itwith the appropriate command
(depending on your OS). Below are sort@rting examples:

tar - xvflinuxcob.tar
tar - xvf suncob.tar
tar - xvf bsdcob.tar

Similar steps should be followed with other tar files; just use the same syntax as above and substitu
the appropriate filename. The cobolscript.exe file is the CobolScript in@npréier.cbl files are
the sample CobolScript programs. As you have already discovered because you are reading this, ti

CobolScripfDevel oper é6s Gui de Pageb

manual is the file comanual.pdf, and requires that you have a free copy of Adobe Acrdbat Reader
4.0 or higher installed orugy@omputer to read and print it. Because there is not a version of
Adobe Acrobat Readavailable for FreeBSDyou have purchased this version of CobolScript

you will have to print the manual from an Acfet@inpatible®S (Window? Linux, IRIX®, HP-

UX®, AIX®, Solarf§ Macintosh, etc.).

Step 2. Install CobolScript.

No special configuration is required for CobolScript to run. However, we recommend that you
modify your PATH environment \ale to point to the location of the CobolScript engine. To do
this permanently (preferred), you can modify the appropriate line of your .profile file in your home
directory. For example, if a line in your .profile file reads:

PATH=/bin:/sbin
you shouw change it to:
PATH=/bin:/sbin:/deskware

in the case where CobolScript is in the /deskware directory. If you are going to run CobolScript
from your current directory only, make certain that "./" is also a component of the PATH variable.

To modify youPATH environment varialfier the current session only, first type:
echo $PATH

at the command prompt to see the current value of your PATH environment Weiethien
Linux® or Suf® machines, at the command prompt type:

PATH=$PATH:/deskware

where /deskware is the path to the CobolScript interphetereeBSDyou should instead type:
setenv PATH oldpath:/deskware

or alternatively:
set path=oldpath:/deskware

whereoldpatis the original value of the PATH variable/@eskwars the path to the CobolScript
interpreter. Your path will be changed for the current session.

Step 3. Run CobolScript.
CobolScript can be run from the command line. Bring up an xterm or command prompt, and type:

cobolscript.exe

to run CobolScript and see the command line options. To run a specific program from the
command line, type:

cobolscript.exe < program - hame>

Pageb CobolScripfDevel oper é6s Gui de

where <programame> is the name of the program you wish to run, along with a path if the
program is not in the current directory. For example::

cobolscript.exe test.chl
cobolscript.exe ../testdir/test.cbl

For more information on running CobolScript from the command line, turn to the next chapter,
Getting Started with CobolScript

If you plan to do Web and CGI development using CobolScript, you will probably want to put
Cobol Script i ndirgctoryr Webabkyvehds-b@@EIGe d tho 1t yh
name, as in /home/httpd/cdiin on Apache. Just place the cobolscript.exe file in this directory.

If you are doing CGI development and intend to read and wris to fibur cdiin directory,

make certain that the permissmmghese files (and on theloigi directory, and its parent

directories) are correctly set. Usehih@d command at the command prompt to propzatyile
permissions. If this is not done, you will encounter difficulties when running scripts from a web
browser, since these scripts generally run as user 'nobody’, who does not have the same authority &
you do when you are logged in at a commangpproreating these files.

Step 4. Set up ODBC on your compurter.

If you have CobolScript Professional Edition and you want to access a database using LinkMaker,
you will need to set up an ODBC data source on your computer. Refer to Appendix H for
instrudions on how to set up UnixODBC (a freeware product from UnixODBC.org) so that you

can connect directly to your data source.

CobolScripfDevel oper é6s Gui de Page7

Page3 CobolScripfDevel oper é6s Gui de

ICON KEY

A

Important point

Chapter

Getting Started wWith Cobo

like how to edit your CobolScript programs, how to run them, and how to debug them.

This chapter aims to answer the basic logistical questions of CobolScripatgding

may have, as well as providing a background on Cobuitecaptive madiéch contains
some useful debugging tool s. With the info
language.

B efore you dive headfirst into CobolScript programming, you will need to learn the basics,

Just as a note, all of the screens shows thapter, with the exceptions of the Windespsific
information in Figures 2.1 and 2.2, are rep
whether the figure shows an-MISS screen or a Unixreen, because the syntax and output of the
illustration would be the same no matter what the platform.

Creating and Editing Cobol Script P

Use a standard text editor to create and edit your CobolScript programs. Irf'\éitittrasuch
as Notepad or Wordpad work well. If you use Wordpad, make certain you save your files as text

Save As
Save in: I'a code
|1 Cobol
Drata
File name: Iu:h.u:l:ul | Save I
Save as ppe: Cancel |

Figure 2.8 Saving a CabolScript program in the Micfo¥éftrdpad Save Asatbg box.

documents, and specify the extension when nammggegram, as in Figure 2.1, or Wordpad will
save the file with a default extensiatxbf Al so, in Wordpad youoll

CobolScripfDevel oper é6s Gui de Page9

fixedwidth font for your editing such as Courier New. This will allow you to later open your
programsn Notepad, M®OS EDIT, or in Unix without a loss of formatting. You will probably

find yourself using the aforementionedXs EDIT text editor (accessible by typing the word

edit at the DOS prompt) when debugging, because despitéashmded appeance, it tracks the

current column and row positions of the cursor, which can allow you to quickly locate a program line
number. Figure 2.2 shows an EDIT screen, with the cursor positioned down and to the right of
center; the resulting Line and Coluwsitpn values appear in the lower right corner of the screen.

"5 M5-DOS Prompt - EDIT =lolx

eS| cl e 5] 515 Al
File Edit Search Vview Options

Help

\compute.chl
Program name: compute.chl

* This program provides examples of

* basic COMPUTE and DISPLAY usage.

1 counter --.99 value 0.
1 num_val PIC ------- V99 value 0.

compute counter = 5+4.
display 5 + 4 = &counter.

compute counter = 5-4.
display 5 - 4 = "&counter.

compute counter = 5%4.
display 5 * 4 = ~ & counter.

campute counter = 5/4.
displa 5 / 4= & counter.
Fl=Help Line:13 Col:8

Figure 2.3 The MSDOS EDIT text editor, showing the current cursor position (Line and Column) in the
lower right corner.

If you choose to edit your programs in Usany editor that saves documents as plain ASCII text will
suffice. Like M®OS EDIT, vi is a useful editor because it provides the means to quickly navigate
to a particular line number. Teaching vi is beyond the scope of this manual, howeveraso refer t
Unix or vispecific reference for more information.

If you are using CobolScript Professional Edition, you will probably find CobolScript CodeBrowser
to be a useful tool for printing and examining your programs; CodeBi®disetssed in detail in
chapter 9.

Running Cobol Script from the Commal

The simplest way to use CobolScript is by running a CobolScript program in command line mode.
To do this, type:

cobolscript.exe <program - name>

at the commad prompt, where <prograname> is the name of the program you wish to run
(donot Iliterally enclose the progr ammaisa me i
anargumetatthe CobolScript executable, cobolscript.exe). This commaresakatiyou have

already included your CobolScript directory in your PATH environment variable, or alternatively,
that you are executing the command from within the CobolScript directory. If you need instructions

PagelO CobolScripfDevel oper é6s Gui de

on how to include your CobolScript dwecin your PATH variable, refer to thstalling
CobolScriptsection of Chapter htroduction to CobolScript / Installation Instructions

| f youdr e u®versiogof €obotScriglirathérdhansa Unix version), running from
command line mode means that you are running your CobolScript program<Do&sksSion.
However, it is important to note that although your CobolScript applications can be ren from th
DOS prompt, CobolScriptm®ta DOS application; it is a nativdb@2pplication that excludes
Windowss peci fi c graphical components in order
to provide crosplatform capability. Graphical develompnagth CobolScript is achieved through

the use of a web server and browased applications, discussed in more detail in Chapters 6 and 8.
See the section titiBdinning CobolScript from a Web Server and Browdeter in the chapter

for more informatio on getting started in a wWedised environment.

Running CobolScript from Windd&e®mmanedine mode, you can drop the extensions if you like,
and just type:

cobolscript <program - name>

Command line program execution will direct all output to the current command line window, and

"% MS-DOS Prompt =] B

e M i|E@ B S5 A

arithmetic
.75

C: \WINDOWS\Desktop\samples»cobolscrip
1 + 15.5 + 1.25
15.5 17.75 (result rounded)
33.00 15. (result rounded)
18.00 - 15.
2.50 =
6.00 *
.20
.80
.00
.00
.50

.00
.00
.50
.00
.20
.80
.00
.00
.00
.50

(result rounded)

(result rounded)

(result rounded)
1.50, remainder
.75, remainder

nmiumwnmwuwmwmwmwnnme

5

5
.2
.2
.5
.5
.2

2
2

C:\WINDOWS\Desktop\samples>_

Figure 2.8 Executing CobolScript programs from the command line prompt.

therefore all output will be plain text. Several of the example programs corttadudeb\Bitript
are designed to run in command line mode; figure 2.3 shows the output of the ARITHMETIC.CBL
example program in an d®S prompt window.

CobolScript also comes with a numbepofmand line options| f you arendt al r e
term, a command line option is a switch that you set at the time that you call an executable program,
which in this case is the CobolScript executable. These switches allow you to change some specific
in the way that CobolScript runs, at the time you rlirydu typeobolscript.exe at the

command line prompt, without any program arguments specified, you will see a list of the
CobolScript command line options.

CobolScripfDevel oper é6s Gui de Pagell

"% COBOLS™1

e =l piEl@] =) =S Al

C:\WINDOWS\Desktop\samples>cobolscript
CobolScript Professional Edition - release 2.01 Win95/98/NT
Copyright (c) 1996-2000 Deskware, Inc.

command Tine usage: cobolscript.exe <pgm-name> - Execute pgm-name.
cobolscript.exe -1 Enter interactive mode.
cobolscript.exe -b <pgm-name> - Use AppMaker to create
executable from pgm-name.
cobolscript.exe -1 <pgm-name> Execute pgm-name and
create execution log.

-t
-dd
-ds

Truncate beyond column 72.
Use " for string delimiter.
Use ' for string delimiter.
(1s the default string delimiter)

eb browser usage
(enter in URL): cobolscript.exe?<pgm-name> Execute pgm-name.
cobolscript.exe?-hlog+<pgm-name: - Execute pgm-name and
create execution log.
cobolscript.exe?-hlisting+<pgm-name> - Display pgm-name
code in CodeBrowser.
[Press ENTER to continue]

Figure 2.4 CobolScript Professional command line options.

Figure 2.4 illustrates tisan MEDOS window (on other platforms, you would need to specify the
.exe extension to the CobolScript executable). The syntax of the CobolScript Standard Edition
command line options is as follows:

cobolscript.exe [-i| -] <program -name>][-t| -dd| - ds]

1 The-i option runs the interpreter in interactive mode; see below for more information on
running in interactive mode. When-ttoption is used, ifrogrammames not specified,
interactive mode will be entered with nothing in the program buffergrémames
specified, interactive mode will be entereggragcemameiill be loaded into the program
buffer.

1 The-l option runs <programame> and creates a listing of the program execution as a
separate log file with the ngonegramame.logor example, if your program name is
test.cbl, and you type the following at the command prompt:

cobolscript.exe T | test.cbl

then a log file namedtlog will be created in the working directory.

1 The-t,-dd, and-ds options are options that coafeethe program name:

Y The-t option causes CobolScript to truncate (and ignore) all characters bey#nd the 72
column position when parsiihg program; this mimics the way mainframe COBOL
works. Your program file is not affected, justtbeution of the program. The default
(nocdt specified) is for all characters in the program to be treated as code.

Y The-ddopti on causes Cobol Script to recogn
string delimiteinstead ofhe default, the accent symbol (). To display a literal double
guote when using this option, your program must use the keyword DOUBLEQUOTE
The-dd andds options are mutually exclusive.

Y The-dsoption causes CobolScripttorecogz e t he singl e quote
string delimiteinstead of the default, the accent symbol (*). To display a literal single

Pagel? CobolScripfDevel oper é6s Gui de

guote when using this option, your program must use the keyword SINGLEQUOTE.
The-dd andds options are mutually exclusive.

CobolScript Professional Edition also provides a utility to build executables from the command line,
CobolScript AppMakKer The syntax for creating an executable using AppMaker is:

cobolscript.exe - b <program - name>

If your program successfully loads, an executable will be created from it and placed in the working
directory. For example, typing the following will create an executabkestzswmethe working
directory:

cobolscript.exe - b test.cbl

CobolScript Error Messages in Command Line Mode

It will be normal for you to encounter bugs in your code while you are testing your CobolScript
programs. In command line mode, error messages display directly to the sexHessieda

format. The error messages are quite specific, and will usually help you pinpoint the source of the
problem with your code.

Multiple error messages are displayed when a single line of code causes multiple errors in the
CobolScript engine;timese cases, one of these multiple errors should be obviously more specific
than the others, and will better assist you in determining the problem than the more general
messages. Multiple error messages, however, never indicate that there anearsretated e

different lines of the program. This is because CobolScript is an interpreted language, and program
execution is halted as soon as a single error is encountered. For this reason;ymuyowst re

program after correcting each error to daterifithere are other errors in your code.

CobolScripfDevel oper é6s Gui de Pagel3

All error messages have an associated CobolScript Error Number, which displays along with the
error message when the error is encountered; all eragesese explained in detail in Appendix

% Telnet - cobolscript.com [_]
LConnect Edit Terminal Help

% cobolscript.exe uts.cbl -
Content-type: text/html

CobolScript Error Humber: 8158
CobolScript Error Hessage: This target variable for the GETENV statement is not
defined: WS-CHTENT-LENGTH

CobolScript Error Humber: 8897
CobolScript Error Hessage: The GETENU statement failed to get: CONTENT_LENGTH

Source Line Internal Line

Humber Humber Source Line

80196 [88146] GETENU USING “GONTEMT LENGTH® WS-CHTENT-LEMGTH.
%

Figure 2.8 CobolScript command line error message.
F, CobolScript Error Meswagester of this CobolScript Error Number.

After the last error message is displayed for a particular error, the text of the line that caused the errc
is displayed, along with some humber information. TiS®urce Line Nuntoire actual number

of the line in the program text file that caused the error. Use this line number to navigate to the line
of faulty code in your program with a text editoMB®OS EDIT or vi. Thdnternal Line Number
indicates the number assigned to the Instruction Pointer (IP) at the time of the error. This number
can be used when a program igrrumteractive mode to determine the problem line, in conjunction

with thelist andip interactive mode commands. FinallySthece Liisghe text of the line that

caused the error. Figure 2.5 shows an example of a command line error and the resulting error
messages.

Running Cobol Script Iin Interactive

From CobolScript interactive mode, you can load a program, execute it, step through and animate it
execution, and exami ne t hasthey arepbpelated.sTheasd y our
features make interactive mode a great debugging tool. Interactive mode can be accessed by using
the-i command line option when running CobolScript from the command prompt. Refer to the
explanation of the CobolScript command line options above for the appropriate command line
syntax. Figure 2.6 shows the start of a CobolScript interactive mode s&gsiOS pinteractive

mode on other supported platforms is essentially the same.

Once youbdbve started an interactive mode ses
that looks like this:

cobolscript>

Pagel4 CobolScripfDevel oper é6s Gui de

From this prompt, you can use all of the interactive mode commands, although some commands

= xtern _ [C7] |

wh=sunBl5E cobolscript,exe -i
CobolScript - release 1,10 Sun0S
Copyright fc) 1996-1999 Deskware, Inc,
Type "?" for Help

cobalscript>(]

Figure 2.6 Interactive Mode in 80

will not work properly until a program has been loaded, and others will not work correctly until a
program has been run. To see a help sstgdelist of these commands, type a question mark (?) at
the command prompt. Figure 2.7 shows a representation of this list of commands.

+ +
| CobolScript 2.01 Copyright (c) 1996 - 2000 Deskware, Inc. |

+ +
| COMMANDS: |

| |

| ? dump modules positions |

| ! <system command> dump positions ¢ |
| animate <speed> dump variables run |
| break <linenumber> files save <filename> |
| clear help <command> stack |
| count ip stepoff |
| deskware list stepon |
| display <variable> load <filename> variables |
| dump listing modules ver |
|
|

|
+ +

Cintira 2 A Intarartivia Mnada Haln Qrraon avamnla

Interactive Mode Commands

The following list defindise interactive mode commands. Online comspaatdfic helfs also
available in interactive mode by typing help <command>.

CobolScripfDevel oper é6s Gui de Pagel5

Interactive Mode
Command

?

I 'system command’

animate <speed>

break<linenumber>

clear

count

deskware

display <variable>

dump variables
dump modules
dump positions
dump listing

Description

Displays all of the commands available in interactive mode.

Runs a system command on your machine. The system commanc
an operating systamommand in the appropriate syntax for your oper
system. Examples:

I dir
I°dir | more”
s Tal

I’chmod 777 test.chbl’

Executes the code that is in the program buffer line by line, and dis
each line of code as it is executed.spégmhrameter controls the spee
of the code interpreting and displaying process: the higher the nun
slower the lines of coddlwe displayed.

Sets a break point to halt program execution.
Thebreakcommand has the following forms:

1 break with no argument specified lists all current break poin

1 break<linenumber>s et s a break poin
atlinenumber

1 break clear <linenumber> clears the existing break point at
linenumber

1 break clear allremoves all existing brezghnts.

Removes the contents of the current program buffer. Aftdedne
command is used, another program can be loaded into the buffer.

Displays the number of lines of code in the program currently loade
the program buffer.

Displays Deskware, Inc. contact information.

Displays the contents of the specifathbleThedisplay command can
be used afteun, animate <speel>, orsteponhas been used to exect
a loaded program.

Creates a text file dump of all variable contents, a module list, a prc
listing, or a variable position listing, depending on the argument. B
the nanes of the files that are created by each command:

1 dump variables -dump.var
1 dump modules -dump.mod
1 dump positions - dump.pos
1

dump listing - dump.Ist

Pagel6

CobolScripfDevel oper é6s Gui de

Interactive Mode
Command

files

help <command>

ip

list

load <file name>

modules

positions

q

run
save<filename>
stack

stepoff

stepon

variables

Description

Displays all of the files that a program used as it was execufiégs Th
command can be used after, animate <speed> orsteponhas been
used to execute a loaded program.

Displays commargpecific help.

Displays the current value of the CobolScript internal instruction po
This value is equivalent to the internahlimeber of the line that was ju
processed.

Displays the contents of the program buffer to the screen. The pro
buffer contains the lines of program code that were loaded withdhe
<filename> command.

Loads the contents of the specified prograffiidilanieto the program
buffer. Once loaded, a program file can be executed by usingthe
animate <speed>command.

Displays all of the modules defined in the code that has been loade
the program buffer.

Di spl ays al | v apositoristommadd canbe used
after a program has been executed wsirgg animate <speed>

Quits interactive mode.

Executes code that has been loaded into the program buffer.
Saves the current contents of the program buffer to a tdetiEme
Displays the code lines that are currently on the CobolScript interne

Turns off step mode that was set usingtédgoncommand. After step
mode has been turned off, the command will run programs normall
without stepping.

Place CobolScript in step mode. Once in step modeytltemmand
will begin interactive execution of the loaded program. Interactive
execution means that the program is executed, one line at a time, t
pressing the ENTER key. As the program is intelaekezuted,
commands such eariables files, ip, andstackcan be used to display
current information.

Displays all of the variables used by a program, and the contents o
variables. Theariablescommand can be used afftar, animate
<speed>, orsteponhas been used to execute all or a portion of a lo
program.

CobolScripfDevel oper é6s Gui de Pagel?7

Interactive Mode Description
Command

ver Displays version information for your CobolScript installation.

Running Cobol Script from a Web Ser

With proper installation and web server configuration, CobolScript programs residing in the
appropriate web server directory can be initiated by (and the output displayed in) a web browser. B
placing your CobolScript programs on a server and accessing them with a browser, you can create
graphical, efficient applications accessible from anyteomith browser software installed on it,

so long as the browsing computer has visibility to the web server computer, either across a network
or the internet.

For your CobolScript web applications to run correctly, you should perform the following steps:

1. Place your programs, any text files used by your programs, and the CobolScript executable in
your we b-bisdrectorg rConsult yougr web server documentation if you do not know
where the cdpin directory is, or you want to modify its location.

2. On Unixservers, use tskmod command to change the permissionthe files that you
placedinthectii n directory, as necessary. Since
permissionen these files generally must be set to allow any user to have the appropriate access
to all files used by your programs. As an example, suppose a CobolScript web program reads
from and writes data to a file named DATA.TXT. The file DATA.TXT must tivait peth
reading and writing by any user, in order for the program to run successfully. In this case, typing

chmod 666 DATA.TXT

at the Unix command prompt will change DATA.TXT appropriately.

3. Make certain CGI scripting is turned on@erdhitted by your web server software; this is
necessary for CobolScript applications to run correctly. Consult your web server documentation
for information on how to enable CGI scripting if it is not already enabled.

Pagel8 CobolScripfDevel oper é6s Gui de

4. After you have placed CobolScript and your CobolScript programs inlyiaudicggitory, you
can execute the programs on the server wit
cobol scri pt . eenamaim the brotvser URL. &igure 2. 8ilfustratds the
execution of a sample timesheet program initiated from a Ndisoaser, but running on a
FreeBSD server with Apache web server software; note the address in the Location: (URL)
box, that runs the program uts.cbl in théicgilirectory with the syntax
ocobol script.exe?uts.cblo.

Netscape

File Edit “iew Go Communicator Help

| y @ 2 i

o= &4 = < & @
i Biach Fopward Feload Home Search Metscape Frint Security Stop

v w‘ " Boakmarks \g& Location: Ihttp:.-".-"www.cobolscript.c:om.-"c:gi-bin.-"c:obolscript.exe?uts.c:bl j @v ‘wihat's Felated

Time Sheet Application

EmployeeName:lMatt j Month:lJanuary j Year:|1999 j “iew TimeShest |

Ty 1999
S o fTufwiTnlF |5
e
3lalslelrlsls
o1t 121314 15 16
17[18[19 20212223
24[25(26 [27 /28129 30

=l

Heurs |Description

Day of
Week Date

E =i= | |Document: Done

Figure 2.8 CobolScript WeBpplication (Timesheet Program) Example
To generalize, any CobolScript program that has been placed, alea@wlitblScript executable,
in the appropriate directory on your web se
following form:

http://<your ip address>/cgbin/cobolscript.exe?<program name>

You can see several more example of this on theddesamplegeb site at
http://www.cobolscript.com/cgbin/cobolscript.exe?samples.chl

CobolScripfDevel oper é6s Gui de Pagel9

http://www.cobolscript.com/cgi-bin/cobol.exe?samples.cbl

CobolScript Error Messages in Web Browser Mode

Besides the standard command line error messaging system explaathingh@obolScript

from the Command Linesection in this chapter, CobolScript provides an integratbdseeb

error mesaging system. This messaging system is unique in that CobolScript determines whether
you are running a program from a web browser or the command line, and controls the display of the

. Netscape

File Edit “iew Go Communicator Help

M i N o i

9 2 3 A & & B
i Eack Forward Reload Home Search Metscape Frint Security Stop

' J 7 Bookmarks \g‘ Location: Ihttp:x’f’www.cobolscnpt.comx’cgirb\na‘cobnlscripl.exe?uts.cbl j @' ‘wihat's Related

Content-type: text/html

CoholScrint . .o

Lirenced Materiale Copryright & 1996-1999 Declomare, e, 011 Righte Recarved.

CobolScript Error Mumber: 0150
Cobol3cript Error Message: This target wvariable for the GETENV statement is not defined: W3-CNTENT-LENGTH

Cobol3cript Error Number: 0097
CobolBcript Error Message: The GETENV statement failed to get: CONTENT LENGTH

Source Line Internal Line

Number MNumber Jource Line
0196 [00148] GETENV USING °CONTENT LENGTH® WS-CHNTENT-LENGTH.
= == |Document: Done

Figure 2.9 Browsetbased error message

error message accordingly. If you run a CobolScript program froei yavowser and encounter

an error, you will see the CobolScript Error Number and error message displayed in a consistent
HTML-based format; if you run the same program from the command line and encounter the same
error, the number and messages will dis@agxibased format.

The web based error message in figure 2.9 illustrates thibaisEdlerror messaging system. In
this particular example, a variable was misspelled in the GETENV statement, and was therefore
undefined and caused an error.

In certain cases when running CobolScript programs from a browser, you will see a completely blan
browser window, or an incomplete display of your HTML without a CobolScript error on the page.
These cases can indicate eimorsur HTML code as well as a CobolScript error. Check the page
source from your browser to find any CobolScript error messages that are embedded in the HTML
but did not successfully display. Correct the CobolScript error(s) first; if the pitsyo stiiéay

properly, but there are no longer any CobolScript error messages in the page source, check your
HTML syntax.

Page20 CobolScripfDevel oper é6s Gui de

CobolScripfDevel oper é6s Gui de Page?1

Chapter

Cobol SEramguage Construct

language. This chapter defines these constructs and their specific CobolScript syntax. Since
CobolScript language constructs are not so different from the elementary components that

A Important point comprise mosither computer languages, you may opt to focus your attention only on those
sections in this chapter that deal with material unfamiliar to you. Each CobolScript construct is
unique in at least a minor fashion, however, so refer back to the appraomnaterset you are

having difficulties with a particular construct.

n CobolScript, there are seveatégories of constructs which form the foundation of the
ICON KEY

With the exception of delimitetling literals, all CobolScript alphanumeric syntax is case insensitive,
meaning uppercase letters, lowercase letters, and any combination of these will work for any
particular command, variable, or reserved word. This flexibility requires thaytmubge c

however, when defining your variables; s&atlablessection for more information.

The CobolScript language constructs are divided into the following categories:

Literals and Literal Keywords
Variables

Data and Copybook Files
Expressions and Conditions
Commands

Reserved Words
Statements

Sentences

= =4 =4 4 4 -4 -5 -2

Comments

=a

We explain each of these categories individually in the following sections.

Literals and Literal Keywords

Literals are any numbers or character stringsaxicteant to be taken literally by your program.
Literals are perhaps best defined by what t
substituted in for the variable name at the time the program is run, nor is a literal necessarily an
expession, which is mathematically evaluated to arrive at a resulting value (although literals can
comprise expressions). As you will see from the examples below, literals can only appear in places

Page22 CobolScripfDevel oper é6s Gui de

within statements or variable definitions where theyedrasia source for information, and never
as a target, since a literal cannot change its value.

Numeric Literals

If a literal is numeric, and you want that numeric literal to be treated as a number by your program, it
should not b enclosed in any offsetting quotes or string delimiters. Also, a numeric literal should

not include any special formatting characters like commas or dollar signs; the only special character
allowed within a numeric literal are the negative 3igrd(the decimal point, indicated with a

standard period (.). To use a numeric literal in your program, just insert the number, including any
negative sign and decimal point, into your statement or VALUE clause in the appropriate position.

If you use aumeric literal in a VALUE clause, the variable being defined must also be numeric.
Here are some examples of numeric literals in VALUE clauses in variable definitions:

1variable_1 PIC $9,999.99 VALUE 2323.41.
1 variable_2 PIC S$99,999.999 VALUE 1 32000.

If you have questions about the PIC clauses in the above variable definitions, picture clauses are
explained completely in AppendixCBbolScript Picture Clauses

Here are some examples of numeric literals in code statements:

MOVE 5 TO variable_1.

SWBTRACT 6.23 FROM number_var_1.
MULTIPLY 2 BY 16 GIVING result_var.
COMPUTE result_var = -2.25.

Alphanumeric Literals

Alphanumeric literals, also knowstasgsre any delimited character or string of characters which

is tobe taken literally by your program. Any character other than the string delimiting character,
which is normally the accent symbol, can appear within a delimited string. See the subsection belov
for more information on string delimiters.

If you use an phanumeric literal in a VALUE clause, the variable being defined must be of
alphanumeric (PIC X) type. Here are some examples of alphanumeric literals in VALUE clauses in
variable definitions:

1 variable_2 PIC XXX VALUE "123".
1FILLER PIC X(n) VALUE "~ <BODY><HR>
0#10 Web Page

If you want further explanation of the types of PIC clauses used in the above variable definitions,
refer to Appendix EZobolScript Picture Clauses

Here are some exampleslpifianumeric literals used in procedure statements:

MOVE "Y' TO variable 1.

IF condition_val = "E1qwT"
CONTINUE

END IF.

CobolScripfDevel oper é6s Gui de Page23

DI SPLAY "~ Hell o, 6Rayb.
The CobolScript String Delimiter

The string delimiten any language is the character that is used to signal the beginning and the end
of alphanumeric literals. In most computer languages, the string delimiter is either the single or
double quote, so strings enclosed in their delimiters are commoatl/teeéerbeinguotedn

CobolScript, however, the default string delimiter is the Grave@doshplain accent (*). Since
CobolScript also has command line options to permit the use of the single or doubtaeuote as
string delimiter (see the section tRadning CobolScript from the Command Linen Chapter

2, Cetting Started with CobdtBaripte details), we usually refer to alphanumeric literals simply as
beingdelimited avoid cofusion.

The accent key is the key located in the upper left corner of North American keyboards, below the
Esc key. Normally, both the tilde (~) and the accent () are on the same key. We selected the
accent as the default string delirffore€obolScript because HTML, which must be displayed from
CobolScript web applications, requires the frequent use of double and single quotes; using a differet
character for the CobolScript string delimiter simplifies the creatioe sfrthgs. The

alphanumeric literal in the following MOVE statement is standard HTML and illustrates this point
well:

MOVE "~ Test Page" TO url _

If you still prefer to use quotes, however, you can. Just create your progegheusingle or
double quotes as the string delisyind run the program using the appropriate command line
option. See the previously mentioned section in Chapter 2 for syntax information.

I f youdre an e erpyeumayebe cueods alidut pirethey thesbaukspshs
special meaning inside a Cobol Script string
must contain any cliesitle scripts that you choose to embgdur CobolScriggenerated HTML.

These scripting languages each may attribute special meaning to certain characters inside a string,
these special characters should not interfere with the original CobolScript string. Simply put, there is
no O6éschapeacter, backslash or other, in Cob
be interpreted literally. Because of this, there is no direct way to display the current delimiter symbol
from within a delimitestringd a special keyword, not enclosed in delimiters, must be used instead.

To display a literal of the accent symbol from within a CobolScript program that uses the accent as
the string delimiteyou must use the ACCENT keywordnas

DISPLAY ACCENT.
DISPLAY "The accent symbol: (* & ACCENT & ").

The same rule applies if you are using double or single quotes as the string/detimites

double quote is your string delimiter, use the DOUBLEQU@Y¥®&ord to display the symbol, as
in:

DISPLAY DOUBLEQUOTE
and when using the single quote as the string delisgtdre SINGLEQUOTEeyword, as in:

DISPLAY SINGLEQUOTE.

Page24 CobolScripfDevel oper é6s Gui de

Literal Keywords

Below is the complete list of literal keywords. Like ACCENT, DOUBLEQ|HDTE

SINGLEQUOTE, each of these keywords represents a specific ASCII character constant.

Keyword Symbol represented by
keyword

ACCENT)

CARRIGERETURN {equivalent of ASCII characty
number 13}

CRLF {equivalent of ASCII characty

number 13 + ASCII charactg
10; uses two bytes}

DOUBLEQUOTE "

LINEFEED {equivalent of ASCII characty
number 10}

SINGLEQUOTE '

SPACE {all blanks}

SPACES {all blanks}

TAB {equivalent of ASCII characty
number 9}

ZERO 0

ZEROS 0

Vari abl es

Variables are information holders. In CobolScript, variables come in five basic forms, each of which
has its own characteristics and utility. These five forms are:

Grouplevel data items

= =4 =4 A

REPLICA variables;

I OCCURS clause variables.

No matter what the form, a variable must firgigtieed a program, and then, as the tearable
vari abl ebds
CobolScript, these value assignments are donAWIHE clauseandassignment statements

impl i es, the

contents

Elementary data items, which can be either numeric or alphanumeric;

can

FILLER variableswvhich are really a special category of elementary data item;

be

assic

VALUE clauses are optional components of elementary dataidbfe dafinitions that establish
an initial value for a variable; assignment statements are any procedure statements that modify a

variabl eds

content s.

A variable definition must follow certain rules of syntax, which are described below for each of the
variable forms. A variable definition may be placed anywhere within a CobolScript program,
meaning that variable definitions are not restricted to the Data Division as they are in COBOL.
However, you should not define the same variable more than anaeputigram.

CobolScripfDevel oper 0s

Gui de

Page25

In CobolScript, variable names are not case sensitiveysdyWvar, and W& ar will all be

treated internally as the same variable. For this reason, only one of these names should be defined
a program. Similarly, two variablestied the same alphanumeric name and differ only by
underscore and dash separators within the variable name, sui¢ABRsaWEWS VAR, will be

treated interchangeably by certain CobolScript commands and should not both be defined in a singl
program.

The Elementary Data ltem

An el ementary data item (also referred to a
numeric or alphanumeric variable. An elementary data item cannot have subvariable components.
The syrdix of a normal elementary data item variable definition is:

<level - number> <variable - name> PIC <picture - clause> [VALUE <value - literal>].

Thelevetumbés a oneor two-digit number from 1 to 99. Think of the level number as
representing the outline position of a vari
rank in the outline, with 1 being the highest level. So long as yourre/atdefist one variable

with a level of 1 in your program, the variables with level numbers greater than 1 will all be
subvariables. This is best illustrated with an example:

1 text_input PIC X(40).
1 group_variable.
2 components.
3 component_1 P IC X(12).
3 component_2 PIC $,999.99.
2val 1l PIC 99.
linput_1 PIC X(25).

I n the variable definitions above, text _in

any subvariables beneath it, and is a level levariad variable growpriable is a grotgvel data

item (explained in the subsequent section), which has two subvariables, components and val_1. Ti
variable components is a group item itself, and has two subvariables, each of which are elementary
items. The variable val_1 is an elementary data item, as is input_1.

Thevariableamef an elementary data item is the name that will be used throughout the program to
reference this particular variable.

The el ementary dat andilengthmare all determandd Ibyetlie salue of thee ,
picturelaudbat immediately follows the PIC keyword. In CobolScript, all elementary item variables
are assigned a fixed number of bytes according to the size specified in the picture clause, so you mt
allocate sufficient space for your variables when you create their picture clauses; otherwise, the
variable values will be truncated and information will be lost. A picture clause can be of two basic
types: numeric (PIC 9 format) or alphanumeric (Pb@néf). The various picture clause formats,

and their meaning, are explained fully in Appen@eidd)Script Picture Clauses

If you want to initialize the elementary data item variable to a value at the time you define it, you can
include the VALUE keyard and follow it with galusterato assign to the variable. The value

literal must be of a type that matches the picture type of the variable; in other words, a variable with .
numeric picture clause must be assigned a numeric value literafjabid with an alphanumeric

Page26 CobolScripfDevel oper é6s Gui de

picture clause must be assigned an alphanumeric literal. See the preceding section of this chapter f
more information on literals.

These are some example elementary item variable definitions:

1 string_variable PIC X(10) VAL UE “abcdefghij.
linput var PIC XX.
1 num_variable PIC $,999.99 VALUE 679.

The Group-Level Data Item

Agroupl evel data item (also referred to as a ¢
that is made up of other variables known as subvariables or component variables. Group items are
similar to record variables or data structu

they enable you to reference and transfer whole greapalies by citing a single, succinct

variable name. In CobolScript, group items are also used to define fileSeedh#®ata and

Copybook Filessection of this chapter for more information on file records.

The syntax of a grodgvel data item variable definition is:

<level - number> <variable - name>.
<subvariable - definition>.

As in elementary items, teeetumberf a gl di i1 ndicates the vari e
the definition of level number for elemgntiata items for more information.

Thevariableamef a group item is the name assigned to the variable, just as in elementary data items

Il n group items, no PI C or VALUE cl auses are
solely by itaubvariabfiefinion®\groud evel data i temds subvari abl
themselves, making possible multiple levels of grouping, or the subvariables can be elementary dat:
item variables.

Below is a standard grdaepel data item variable défwni. In this example, group_variable is the
group item, and is composed of two elementary items:

1 group_variable.
5 component_1 PIC XXX VALUE "'mS1".
5 component_2 PIC $,999.99.

The FILLER Variable

The FILLER variable is a special type of elementary data item; it should only be used as a subvarialt
to a group item, because it is always given the name FILLER, and cannot be directly referenced. Tt
syntax of a FILLER variable definition is:

<level -number> FILLER PIC <picture - clause> VALUE <value - literal>.

CobolScripfDevel oper é6s Gui de Page27

Thelevetumbemndpicturelause the same as those for a normal elementary data item, except
FILLER variables should never be level 1 variables (because they must be subvariables).

A VALUE chluse should almost always be specified for a FILLER variable, since FILLERs generally
act as constants in a program. In cases where the FILLER variable is just acting as a placeholder, ¢
VALUE clause may not be necessary.

Once defined, FILLER variabtzs only be referenced and modified indirectly, through references

to their parent variable. They should be used in cases where there is no need for a direct reference.
such as when a component of a group item remains staticahirtlogprogram. In the example

below, a FILLER variable is one of three subvariables that comprise the group item variable
group_variable:

1 group_variable.
5 component_1 PIC XXX VALUE "'mS1".
5 FILLER PIC X(n) VALUE " has a dollar value of .
5 component_2 PIC $,999.99.

Using PIC X(n) with FILLER variables

The special picture clause PIC X(n) can (and generally should) be used with any alphanumeric
FILLER variable for which you specify a VALtl#tise. PIC X(n) automatically assigns a length to
the FILLER variable based on the | ength of
the variable length yourself when creating the picture clause. For example, in group_variable above
the HLLER variable is automatically assigned a length of 23 characters because the value clause is
characters long.

For more information on PIC X(rgee Appendix EobolScript Picture Clauses

Implied PIC X(n) FILLER vari ables
FILLER variables using PIC X(n) can also be defined with a shorthand notation that eliminates the
FILLER keyword, picture clause, and VALUE keyword. This is best illustrate@xethe:

1 group_variable.
5 "Enter your name here: ".

In group_variable above, there is a single FILLER variable, with a value of "Enter your name here: ".
The above gldi is the exact equivalent of the following:

1 group_variable.
5 FILLER PIC X(n) V ALUE “Enter your name here: ".

This shorthand may only be used when the FI
by delimiters.

REPLICA Variables

A REPLICA variable is a special type of elementary item variable tleatdrae thame and level
number as a previously defined elementary item variable, and refers to the same physical variable ir
memory as the originally defined variable. REPLICA variables are useful when defining multiple

Page?8 CobolScripfDevel oper é6s Gui de

group item variables that all regiieessame elementary item component; using a replica in these
cases avoids the task of moving values back and forth between these elementary items.

REPLICA variables are defined with a level number, variable name, and the REPLICA keyword.
PIC and VALUE @uses are not permitted in a REPLICA variable because they are not meaningful;
this information is defined by the original variable (also catiglitzepajenthose definition

always precedes the REPLICA variable definition. Similarly, no VAIddE afe permitted in

replicas, and both the replica and the replica parent must be elementary item variables with the sam
|l evel number . Hereds the basic REPLICA var

<level -number> variable_name REPLICA.
And hereds a si musagee exampl e of REPLI C

1 group_variable_1.
5 component_1 PIC XXX VALUE 'mS1’.
5 " has a dollar value of .
5 component 2 PIC $,999.99 value 125.99.

1 group_variable_ 2.
5 "The value in the component_1 replica variable is: "
5 component_1 REPLI CA.

DISPLAY group_variable_1.
DISPLAY group_variable_2.

MOVE "g72" TO component_1.
DISPLAY group_variable_1.
DISPLAY group_variable_2.

In the above example, the normal, full definition of component_1 occurs in the group_variable_1
group itendefinition; the second component_1, defined in group_variable_2, is a replica of the
original component_1. Thus, component_1 inside group_variable_1 is the replica parent, and
component_1 inside group_variable_2 is the replica. The output of thevede abo

mS1 has a dollar value of $125.99

The value in the component_1 replica variable is: mS1
g72 has a dollar value of $125.99

The value in the component_1 replica variable is: q72

The OCCURS Clause Variable

In CobolScript, the OCCURS clause variable is a special type of variable, either elementary or grouy
item, that defines arrays of each of its subvariables. The OCCURS clause syntax excels over other
types of array definition syntax when defining rag@rgs; this is because arrays of records fit

naturally within the syntax of an OCCURS clause group item definition.

The syntax of an OCCURS clause group item variable definition is:

CobolScripfDevel oper é6s Gui de Page?9

<level - number><variable - name>OCCURS <n> TIMES.
<elementary -item -defin iton> or <group -item - definition>.

The syntax of an OCCURS clause elementary item variable definition is:

<level - number> <variable - name> OCCURS <n> TIMES PIC <picture - clause>
VALUE <value - literal>.

An OCCURS clause variable is defined the same way as its underlying form (elementary or group
item), except for the OCCURS clause. This clause is initiated by the OCCURS keyword; in the case
of the OCCURS group item, it indicates that the subvariabtesese this group are recurring.

In the case of the OCCURS elementary item, it indicates that this particular variable is recurring. In
either case, the number of times the OCCURS variable(s) recur is indicated by a positive (strictly
greater than zérmmteger value which can either be a numeric literal or a numeric variable.

When referencing an OCCURS variable, you must use an index to indicate which of the recurring
variables you mean. The index must be an integer with a value from 1ftthe. C&2CURS
variable is defined using either of these forms:

1 occurs_variable OCCURS 10 TIMES.
5 component_1 PIC 99.
5 component_2.
10 component_2_1 PIC XX.
10 component_2_2 PIC 99.
or,

1 component_1 OCCURS 10 TIMES PIC 99.

Then, component_1 is a recurring variable (along with component_2 and its subvariables in the
group item example), and its index can be any number or variable with an integer value from 1 to 1C
inclusive. So, to reference the third OCCURS variablepafreanh 1 in a statement, we would

use the syntax

component_1(3)
or, alternatively:
component_1(integer_variable)

where integer_variable is an integer numeric variable that is equal to 3 at the time it is referenced. V
can also usedtsyntax:

component_1(expression)

where expression is any valid mathematical expression that evaluates to a positive integer, such as
following expression, which again assumes a value of 3 for integer_variable:

component_1(((2"2)+integer_variable)%3)

Page30 CobolScripfDevel oper é6s Gui de

The group item component_2 and its two subvariables, component_2_1 and component_2 2, can
be referenced the same way as component_1; thus, all of the following forms are permissible:

component_2(3)

component_2_1(3)
component_2_1(integer_variable)
component_2_2(((2*2)+integer_variable)%3)

Specifying a VALUE clause for an elementary item that recurs initializes all OCCURS elements to
the valuditeral. For example, in the gldi below, component_1(1) through component_1(5) will have
initial valuesfd®5, and component_2_1(1) through component_2_1(5) will have initial values of

‘me’. Specifying a value clause for an OCCURS elementary data item has the same net effect, as i
the second OCCURS clause definition below:

1 occurs_variable OCCURS 10 TIMES.
5 component_1 PIC 99 VALUE 5.
5 component_2.
10 component 2 1 PIC XX VALUE ‘me’.
10 component_2_2 PIC 99.
or,

1 component_1 OCCURS 10 TIMES PIC 99 VALUE 5.

Note that CobolScript Standard Edition onfynfis singldevel OCCURS clauses. In other words,
two-dimensional and higher arrays are not supported by the Standard Edition. This means that an
OCCURS clause gldi that has any OCCURS clause subvariables is not permitted in the Standard
Edition. Seeddow for an explanation of multidimensional array usage in CobolScript Professional
Edition.

Multidimensional Arrays Using CobolScript Professional

If you are programming with CobolScript Professional Edition, you can define OCCURS clause
variables that contain other OCCURS clause subvariables. This type of variable is also known as a
multidimensional &geguse its individual elements compraeanthat has more than one index
argument, or di mensi on. Letds take a | ook
CobolScript Professional:

1 day_of week OCCURS 7 TIMES.
5 hour_of _day OCCURS 24 TIMES.
10 fahr_temp PIC --- 9VALUE 17 300.
10 barom_pressure PIC 99.99 VALUE 0.

In the definition above, 168 total instances of the fahr_temp and barom_pressure variables are
created and initialized. Each elemental variable corresponds to a temperature and barometric
pressure reading fosecific hour of the day on a specific day of the week. The value in a specific
element is referenced using advgument array reference with the dimensions separated by
commas, as in the following statement:

DISPLAY fahr_temp(1, 13).

CobolScripfDevel oper é6s Gui de Page31

This statement c@sponds to displaying the temperature value for 1:00 PM on Sunday, assuming
Sunday is treated as the first day of the week.

The same range of argument syntax is permissible in multidimensional arraydirasmsional
arrays, so that the following all valid references, assuming var_idx1 and var_idx2 are both
properly defined:

fahr_temp(7, var_idx2)

hour_of day(6+1, var_idx2)
barom_pressure(var_idx1, var_idx2)
fahr_temp(var_idx1+1, var_idx2 -1)

Additional array dimensions are declared using addigsted OCCURS clauses:

1 a OCCURS occurs_num TIMES.
5b PIC X VALUE 'b".
5c.
10d PIC9 VALUE 1.
10 e PIC XX VALUE “ee".
5f OCCURS 2 TIMES PIC XX VALUE “ff".
5 g OCCURS 3 TIMES.
10 h PIC XX VALUE "hh’.
10i OCCURS 4 TIMES.
20jPIC X VALUE 7.
20 k PIC X VALUE k.
201 OCCURS 2 TIMES PIC XX VALUE 'II'.
20 m OCCURS 2 TIMES.
30 n PIC X VALUE 'n".

Referencing syntax for variables with more than two dimensions is just an extension of the two
dimension case, waldditional commas separating the additional array dimensions:

MOVE p° TO n(1,2,3,1).
DISPLAY 'n(1,2,3,1) after move =" & n(1, 1+1, occurs_num -1,1).

There is no technical limit to the number of array dimensions that can be used in CobolScript
Professiorlahowever, the limit on the number of variables that may be declared in a single program
creates a practical upper bound on the number of array dimensions. At any rate, careful
programming will rarely warrant the use of more than three dimensionghAikoeptions may

apply in certain mathematical programming cases, and in cases involving intentional denormalizing
of data constructs, very large dimension arrays should generally be avoided in order to keep your
programs comprehensible.

Data and &o pFybdoeos

Like variables, data and copybook files hold information that can be used in a CobolScript program.
Of course, files are external entities, and as such are independent of the program and are stored
separately on disk. Files also have a totatg#pat is generally only limited by your disk space,

Page32 CobolScripfDevel oper é6s Gui de

rather than being controlled by program limitations (although there are limits on individual record
sizes in data files).

Data Files

A CobolScript data file isjua special type of ASCII text file that containsedataifkecords are a
long string of data valuesfields Each record is terminated with a linefeed.

Records have a specific layout, so that each record has the same reldsyemaf &ach specific
field within a record shares formatting characteristics with the field in the same position in the other
records in the data file. For example, if the fifth field in a record is a numeric withobsaeajue
then the fifth field in the other records in the file will also be six byte numerics. An example

delmtetd at a file with a delimiter of 06|06 and s
12051999|al@bbnb.net|Reynolds|Al|10 Meisenheimer Drive|Womack] MI1|49332]|
12051999|smith@ffdfff.com|Smith|Roy|511 Critical Pass|Boca Raton|FL|33983|
07061999|misterm@wyyyee.edu|M|Mr|302489|Rejkyavik||54663 - 211

Data files can be either toldmilimited or fixed format. In a delimifiég] a sinig byte delimiter
character of your choice is used to separate individual fields from one another, while in a fixed
format file, a fixed number of bytes is assigned to each field, so there is no need for a delimiter.

To enable a particular data file tpioeessed by a program, you must first describe the file. This is
done with the FD (File Description) statemé&ht FD statement has the following syntax:

FD <filename> RECORD IS <length> BYTES.

Thefilenmmeargument is the alphanumeric literal or variable that indicates the name and path of the

data file. |l tds best to keep your data fil
frequently move your code between machines with Windovesditessgnd ones with Unix file
Ssystems. This is because the doreetovsuy 8 M

your code will then require that you change this symbol every time you switch between the two
platforms.

| t 6 s ithatyauspedythe corréagtargument, since this tells CobolScript where to end

the record. A record is terminated with a carriagelis@ie®d combination for Windows

machines, and just a linefeed for Unix platforms; these terminatingsHaoacteer, are not

included in the length argument, so that the same file can be described by the same FD statement,
regardless of platform.

The length argument can be either a numeric variable or a numeric literal. In either case, it should
have a psitive (strictly greater than zero) integer value.

The length of a fixed widtbcord is always equal to the sum of the lengths of the fields that
comprise it; calculating the length of a delingitenld is a binore involved, but not difficult. The
minimum length that you must use for a CobolScript delimited record, provided your delimiter
requires one byte of storage, is always equal to the formula:

Sum of lengths of individual record fields + (number of field s in record)

CobolScripfDevel oper é6s Gui de Page33

In delimitediles, CobolScript rigipiads the records with spaces, so that each record is still the exact
number of bytes specified in the length argument. This fact is relevant if you process a delimited
data file crted with another application: Although reading and appending to that file will work fine

in CobolScript, updating existing records will not, since each record has a different size. For more o
this topic, see ChapteiFHle Processing and I/O

Onceyoobve described a file, you must define a
component field in the record. In CobolScript, you define record variables like any otheelgroup

data item. You can define file record variables anywhar@\wrogram, so long as the record

definition appears prior to any file processing statements that make use of the record such as REAL
and WRI TE. |l tds i mportant t o jpanditodinethemne any
with the proper format and length, especially if they aréefig#u format. An incorrect or

incomplete record definition will cause your record subvariables to be populated with the wrong
fields, and your data will be messed up, to sagdthe le

A FD statement for a fixedidth record, followed by the record definition for the file, might look
like this:

1 filename_var PIC X(n) VALUE ‘file.dat’.
1 bytes_var PIC 999 VALUE 100.
FD filename_var RECORD IS bytes var BYTES.
1 record_var.
5 rv_field_1 PIC X(50).
5rv_field_2 PIC X(10).
5 rv_field_3 PIC X(40).

Data file manipulation is discussed in detail in ChapilerProcessing and 1/0

Copybook Files

Copybook files aexternal code files that can be loaded into a CobolScript program via a single
statement. The contents of the copybook file are then treated as if they were part of the program.
Copybooks are most commonly used to store variable definitions, espeaialigriable

definitions, since the same data file is often used by multiple programs. Using a copybook to store ¢
record variable definition reduces programming effort and eliminates the possibility of discrepancies
in the definition across prograr@®pybooks also work well for storing grewel data items that

contain HTML that you want to replicate across your CobolScript CGI programs.

Copybook files are included in a program with the @ORYCLUDE statement. These

statements are special in that they can be located anywhere within a program. This allows the code
a copybook to be substituted into the program at any location, wherever the IGCRYDE

statement is placed.

In the following example, an INCLUBEtement is inserted into a program to include the file
testvars.coy , Which is located in the parent directory of the CobolScrigéngin di r ect or vy
Windows machine:

FD test.dat RECORD IS 17 BYTES.
INCLUDE .. \testvars.cpy .

Page34 CobolScripfDevel oper é6s Gui de

Al t hough itds possiblestatemehwdlei me pathihs i @
inadvisable if you frequently move your code between machines with Windows file systems and one
with Unix file systems. The di\Gd ewdrogwys s§y/mb
your code will then require that you change this symbol every time you switch between the two
platforms.

When we examine the contents of testvars.cpy, we see that this file contains a few simple variable
definitions that can then be referenced by thegaitigram:

1 content_length PIC 9(5).

1 eof PIC 9.

1 occurs_var OCCURS 5 TIMES.
5 occurs_var_1 PIC 999.

Assuming that it follows the INCLUDE statement in our original program, the following MOVE is
legitimate because the definition foreofasw i ncl uded i n the program

MOVE 1 TO eof.

For more information on the COPY and INCLUDE statements, see their respective entries in
Appendix ALanguage Reference

Expressions and Conditions

Expressions and conditions can appear in multateits in a CobolScript program. Positional

string reference and array arguments can be expressions; CobolScript COMPUTE statements, whic
assign a value to a single variable, permit the use of mathematical expressions in the assigning valu
the CobolSipt DISPLAY and DISPLAYLF statements allow expressions as arguments, and the
expressions are then evaluated before the result is displayed; and the IF statement and all variation:
of the PERFORM .. UNTIL statements evaluate conditions. Below are #sedibiales of

syntax and evaluation for expressions and conditions. See Appemgjuaye Refefentee

exact syntax of COMPUTE, DISPLAY, IF, and PERFORM.

Expressions

In CobolScript, an expressisiany mathematical formtilat has a singl@lue solution. An

expression can consist of any other expressions, numeric literals, variables, functions, or assignmer
statements using mathematical operafdirsariables used in an expression must be properly
defined with a numeric picture clause prior
values will be substituted in prior to evaluating the expression. Functions, which are mathematical
operations such as sine, cosine, present values, and the natural log, are described fully in Appendix
Function Reference

CobolScript permitted operators

Symbol | Meaning Example Example result
+ Add 5+2 7
- Unary negative sign -4 -4
- Subtract 5-2 3
* Multiply 2*2 4

CobolScripfDevel oper é6s Gui de Page35

Symbol | Meaning Example Example result
/ Divide 717 1
A Raise to a power 2N 16
\ Express in scientific notation | 2\ 2 2*10"2 =200
% Modulus, or mod 10%4 2
= Equals 1=3 0
Symbol | Meaning Example Example result
NOT = | Not equal to 1 NOT =3 1
> Greater thasign 18>1 1
1>18 0
1>1 0
< Less than sign 18<1 0
1<18 1
1<1 0
>= Greater than or equal to 18>=1 1
1>=18 0
1>=1 1
<= Less than or equal to 18<=1 0
1<=18 1
1<=1 1
AND | Logical AND 2ANDO 0
5AND 3 1
OAND O 0
OR | Logical OR 10RO 1
0OORO 0
30R7 1
XOR | Logical exclusive OR 1 XORO 1
0 XORO 0
3 XOR 7 0
NOT | Logical NOT NOT 1 0
NOT O 1
NOT 9 0
Order of operations

Operations are not necessaeiformed from left to right in an expression; instead, they are
evaluated in an order that depends on the relative rank of the operation, so long as no parentheses
are used. The order in which operations are performed in an expression, from fiesi petésim
performed, is:

Order | Operation(s)

/,* (divide, multiply)
+, - (add, subtract)

1 - (unary negative sign)
2 N (power)

3 \ (scientific notation)

4 % (mod)

5

6

Page36 CobolScripfDevel oper é6s Gui de

Order | Operation(s)
7 >, <, >=, <= (greater than, less than, greater than or eg
less than or equals)

8 =, NOT = (equals, not equals)
9 NOT (logical not)

10 AND (logical and)

11 XOR (logical exclusive or)
12 OR (logical or)

Rather than memorizing the order of operations, we recommend that you always use parentheses it
your expressions. This will ensure that operations are performed in the order that you wish, and will
avoid confusion for anyonsesivho reads or maintains your code.

Example expressions

Expression Meaning
5 The number 5.
X The value of the variable X.
X+Y The value of the variable X plus
or the value of the variable Y.
X+Y
X+Y +Z The value of the variable X plus

the valuef the variable Y plus
the value of the variable Z.
((X+Y)/2)%3) "1.86- The variable X plus the variable Y,
SQRTX) all divided by Z,
all modded by 3,
all raised to the power of 1.86,
all minus the sque root of the variable X (SQR®&

function).
A2 3 multiplied by 10 to the power of 2,
equivalent to 3 * (10°2).
ROUNDED(X*Y*Z - The variable X multiplied by the variable Y multig
Q/5/40.34) by the variable Z,

all minus the value of:

The variable Q divided by 5 divided by the valy
of:

4 to the power of 0.34.

The result is passed as an argument to the
ROUNDED function, and is rounded to the nearg
integer.

X + SIN(PI(0)/2) The variable X plus the singffradians (Sikind
Pl are bth mathematical functions).

Expression construction rules

1 Any level of nesting using parentheses is permitted.

CobolScripfDevel oper é6s Gui de Page37

1 There is a finite length of expression permitted; generally speaking, keep your expressions
smallenough to be easily understandable and you will avoid this limit. If you do encounter
the limit, divide your expression up into multiple assignment statements.

1 There is a finite length of individual token (argument not separated by spaces) permitted.
Insert spaces between expression components if you encounter this limit.

1 Spaces are not required between expression components if a syswbadi(non
mathematical operator is separating the components; however, you should generally use
spaces when performmsgbtraction operations on variables with dashes or underscores in

their names. To i Il und thnruast e,i xtdh & aenx bree svy
ways, but the first method is preferred:

Y (VAR-1-6)

Y (VAR-1-6)

This is because if both VARand VAR-1-6 are defined variables, the meaning of the
second example becomes unclear to anyone reading the code. In CobolScript, longer

variable names are always substituted prior to shorter names, so that the second case above

would always evaluate to theatdei VARL-6. Even if both variables were defined, the first
example would still evaluate to the quantity {}JARinus 6, which is the desired result in
this case.

1 Alphanumeric variables or literals in expressions that are within COM&iTients are
not allowed, even if the argument is in the context of a truth test. Thus, the statement:

COMPUTRBotal = (alnum_var = "Y").

is illegal because it contains an alphanumeric variable (alnum_var) and an alphanumeric liter
(Y"), even though the expression would evaluate to a numeric result. To set values based o

a test of alphanumerics, embed the assignment withicozaditfon.

Conditions

Conditions are expressite logic tests in IF and PERFORM .. UNTIL statements that evaluate to
a numeric result. In CobolScript, conditions are less restrictive than expressions are, because
conditions allow alphanumeric variables or literals tduakedhi tests. Like regular expressions,
though, conditions must still evaluate to a sialyle result. This numeric result determines
whether the condition has evaluated to TRUE or FALSE; a result of exactly zero (0) is FALSE,
whileany other resutbnsidered to be TRUE. Thus, the conditional statement below will evaluate
to TRUE because the value of the conditietDis

IF (4+6)* -4)THEN

General condition rules
There are some general rulesgibzaern conditions , no matter what form they take:

1 As mentioned above, a conditial evaluate to FALSE only if its value is zero. Any other
numeric result is TRUE.

1 A condition must evaluate to a numeric result. Alphanumericaresalslid.
1 Any level of compound condition nesting using parentheses is permitted.

Page38 CobolScripfDevel oper é6s Gui de

T There is a finite | ength of condition; g
expressions small enough to be easily understandable and you will avibidftlgsuido
encounter the limit, assign the value of one or some of your expressions to a variable prior to
evaluating the condition. Then, your condition can include the variable in place of the
lengthy expression. If you cannot do this becauaesyewaluating alphanumerics, break
your condition up into multiple conditions instead, and nest your IF statements.

1 There is a finite length of individual token (component of condition which is not separated
by spaces) permitted. Insert spaces betwesitictocomponents if you encounter this
limit.

91 There is no support for implied subjectsnplied operatora CobolScript conditions.
You must completely write out your condi
dondt worry. They are COBOL constructs
computer languages.)

Condlition syntax

CobolScript conditions come in two types: General logic tests, or Type | conditions, and tests of the
type of value contained in an alphanumeric variable or literal, which are Type Il conditions. This is
the allowed syntax for both typésonditions, and rules specific to each condition type:

Type | conditions:

<Expression>

NOT <Expression>

<Expression> AND <Expression>
<Expression> OR <Expression>
<Expression> XOR <Expression>

<Expression> [IS] [NOT] = <Expr ession>
<Expression> [IS] [NOT] EQUAL [TO] <Expression>
<Expression> [IS] [NOT] > <Expression>

<Expression> [IS] [NOT] GREATER [THAN] <Expression>
<Expression> [IS] [NOT] < <Expression>

<Expression> [IS] [NOT] LESS [THAN] < Expression>
<Expression> [IS] [NOT] >= <Expression>

<Expression> [IS] [NOT] <= <Expression>

Rules specific to Type | conditions:

1 All Type | conditions may have numeric literals, numeric variables, alphanumeric
variables, or string literals in their component expressions.

1 Alphanumeric comparisons of letters assigns a greater value to letters that come later
in the English alphabétherefore:

“Z > A’ evaluates to TRUE;
A’ =" " evaluates to FALSE.

1 Comparison of alphanumeric values to numeric values is permitted, but will default
to an alphanumeric to alphanumeric comparison. Thus, the following camdlition
others like it will evaluate to TRUE:

9 =9

CobolScripfDevel oper é6s Gui de Page39

L}

Type Il condlitions.

<Alphanumeric - val>[IS] [NOT] NUMERIC
<Alphanumeric - val>[IS] [NOT] ALPHABETIC

Rules specific to Type Il conditions:

1 Type Il conditions are tests to determine whether the characters contained within an
alphanumeric variable or literal are NUMERISLPHABETIC

1 A NUMERICvalue is any valid number, including any negative sigciamal d
point. NUMERIC values maginclude spaces; a value such as '5 " will not be
considered numeric.

1 An ALPHABETICvalue is any value that falls within the rangesn8l az, or is a
space.

1 All Type Il conditions may operateyooh alphanumeric variables or string literals.

Commands

A command is the reserved word or words that form the foundation of a single procedural
statement. In this section, we divide the commands into categories that can help give you a basic
idea of whatobolScript commands can be used for. Refer to Appehdixgiage Refefence

detailed syntax rules governing each command as it is used in a complete statement.

General Program Control Commands

This groupf commands is used to direct program fimpulate variables, and include code
modules from external files in a program. Check the Language Reference for a command to
determine its CobolScript syntax and its full capability.

ACCEPT DISPLAY INCLUDE PERFORM..VARYING
ADD DISPLAYLF INITIALIZE STOP RUN
COMPUTE DIVIDE MOVE SUBTRACT
CONTINUE GOBACK MULTIPLY UPPER

COPY IF PERFORM LOWER

TRIM LTRIM RTRIM TOK

GETCMDLINE CREATESHMPOOL PUTSHMPOOL GETSHMPOOL

DETACHSHMPC
OL

File Processing Commands

These commands execute file input and output operations on normal text files. Files in fixed width
and delimited formats can be read into normal4geeidata items, and normal grewel data
items can be populated and then written to delimitegdwidth files. Note that these

Paged0 CobolScripfDevel oper é6s Gui de

commands will only operate on ASCII files; no proprietary data formats are supported in

CobolScript.
CLOSE POSITION REWRITE
OPEN READ WRITE
READBLOCK WRITEBLOCK

I LinkMaker™ Database Interactivity Commands

E This group of CobolScript Professional Edition commands can be used to establish a connection

with an external database, and directly embed SQL (Structured Query Language) in your programs
interact with that database. SeesAgx H,CobolScript Professional Edition Embgefisiedd®€L
information on interacting with a database in your programs and on the general syntax of embeddec
SQL.

CLOSEDB EXEC SQL OPENDB

]I .
Web Processing Commands
(I m Thisgroup of commands can be used to simplify CGI programming and interaction with a web

server. The ACCEPT DATA FROM WEBPAGE command gets CGI data that has been passed to
it via the POST method from HTML forms; DISPLAYFILE enables binary files to betlsent to

web visitor, while DISPLAYASCIIFILE sends ASCII text files; GETENV gets information about

the web server; and GETWEBPAGE gets the content of a web page at a specified address.

ACCEPT DATA FROM DISPLAYASCIIFILE DISPLAYFILE GETENV GETWEBPAGE
WEBPAGE

M“ Basic Email Commands

Simple emails may be sent and received using these commands. You must have an email (POP)
account in order to use GETMAIL and GETMAILCOUNT. You must have access and

permission to use an SMTP server to utiliXEOSRAIL. A specific set of errdrapping variables

IS mandatory when using these commands; these variables can be used to redirect program flow
when errors are encountered in the mail transfer process.

GETMAIL GETMAILCOUNT SENDMAIL GETMAILSIZE DELETEMAIL

CobolScripfDevel oper é6s Gui de Paged1

N

TCP/IP

A~

FTP Commands

Cobol Script provides standard FTP commands,
in order to invoke and conduct file transfers. You can use these commands to send and receive file
from within your CobolScript applications. A specific set otrappmg variables is mandatory

when using these commands; these variables can be used to redirect pratpemefiaws are
encountered in the file transfer preces

FTPASCII FTPCD FTPCONNECT FTPPUT
FTPBINARY FTPCLOSE FTPGET
TCP/IP Commands

This group of commands provides the means to do TCP/IP socket programming using CobolScript.
Socket programming is useful for buildinginkztdaces over a network, and for other types of

network communication tasks. A specific set ofteapping variables is mandatory when using

these commands; these variables can be used to redirect progveenfEavors are emmntered

with a particular command.

ACCEPTFROMSOCKE CONNECTTOSOCKET GETHOSTNAME RECEIVESOCKET
BINDSOCKET CREATESOCKET GETTIMEFROMSERVER SENDSOCKET
CLOSESOCKET GETHOSTBYNAME LISTENTOSOCKET SHUTDOWNSOCKET

Unix Sheltstyle Commands

These commands either mimic a Unix shell command (BANNER and CALENDAR), provide a
unique twist on a shell command (GETBANNER and GETCALENDAR), or allow interaction
with the host environment (CALL).

BANNER CALL GETCALENDAR

CALENDAR GETBANNER

Dynamic Processing Command
This command enables dynamic execution of CobolScript statements that are held within variables.

~

Thisallowst at ements to be created 6on the flyd &

EXECUTE

Page42 CobolScripfDevel oper é6s Gui de

Cobol Scr

| pt

Reserved Wor ds

This is a list of the reserved words in CobolScript, which includes commands, keywords, special
division and section words, and words reserved for future use in later releases of the CobolScript
engine. Not all words listed here necessarily have netrergutrent version of the CobolScript

engine, but you should not use any of these exact words as variable or module names. This list doe
not include CobolScript function names, but you should also avoid naming any variables with the
same name as aopdtion. The complete list of functions is in Appendixiition Reference

ACCENT ELSE IF SENDSOCKET

ACCEPT ELSIF INTO SENTENCE

ACCEPTFROMSOCKE"™ END IS SET

ADD ENDIF INCLUDE SHUTDOWNSOCKET

ALPHABETIC END EXEC INITIALIZE SINGLEQUOTE

AND END IF LENGTH SLEEP

AT END PERFORM LESS SOURCE

AUTHOR ENVIRONMENT LINEFEED SPACE

BANNER EQUAL LISTENTOSOCKET SPACES

BINDSOCKET EQUALS MOVE SQL

BY EVALUATE MULTIPLY STOP

BYTES EXEC NEXT SUBTRACT

CALENDAR EXECUTE NOT TAB

CALL FD NUMERIC THAN

CARRIAGERETURN FILE OBJECT THEN

CLOSE FILLER OCCURS TIME

CLOSEDB FROM OFFSET TO

CLOSESOCKET FTPASCII OPEN STOP

COMPUTE FTPBINARY OPENDB SUBTRACT

COMPUTER FTPCD OR TAB

CONFIGURATION FTPCLOSE PERFORM THAN

CONNECTTOSOCKET FTPCONNECT PIC THEN

CONTINUE FTPGET POSITION TIME

COPY FTPPUT PROCEDURE TO

CREATESOCKET GETBANNER PROGRAMD UNTIL

CRLF GETCALENDAR READ UPDATING

DATA GETENV READING USING

DATE GETHOSTBYNAME RECEIVESOCKET VALUE

DAY GETHOSTNAME RECORD VARYING

DAY- OF WEEK GETMAIL RELATIVE WEBPAGE

DELIMITED GETMAILOUNT REMAINDER WITH

DISPLAY GETTIMEFROMSERVER REPLICA WORKINGSTORAGE

DISPLAYASCIIFILE GETWEBPAGE REWRITE WRITE

DISPLAYFILE GIVING ROUNDED WRITING

DISPLAYLF GOBACK RUN XOR

DIVIDE GREATER SECTION ZERO

DIVISION IDENTIFICATION SENDMAIL ZEROS

DOUBLEQUOTE TRIM LTRIM RTRIM

TOK GETCMDLINE CREATESHMPOOL PUTSHMPOOL
CobolScripfDevel oper é6s Gui de Page43

GETSHMPOOL DETACHSHMPOOL UPPER LOWER

St atement s

A statement joins a CobolScript command with arguments and other keywords to form a single,
distncoper ati on. You can also think of a stat
CobolScript engine executes code in a statbyrstatement manner. Sometimes a statement is

just a singkvord command without arguments, as in the following teg cas

FTPASCII
CONTINUE

Normally, however, statements are composed of commands, arguments, and any additional
keywords that are required to complete the statement, as in:

MOVE source_var TO target_var

COMPUTE target var=Y + 1

DIVIDE 10 BY 3 GIVING div_resu It REMAINDER remain_result
GETENV USING "CONTENTLENGTH® content_variable

All statements, like sentences, must begin after column 7 (the seventh character counting from the
lefthand side of your text program file), meaning that the leftmost charatééeiment should be
in column 8 or higher.

You should indent statements that are nested within conditionals with a consistent offset for each
successive level of nesting to make your code more legible. Appropriate indentation looks like this:

MOVE 20to x.
PERFORM UNTIL (x < 2)
COMPUTE target_var = SQRT(X)
IF target_var < SQRT(2) THEN
DISPLAY “x s less than 2
ELSE
IF target_var > (SQRT(4)+1) THEN
DISPLAY “x is greater than 9°
END IF
END IF
MOVE target_var TO x
END PERFORM.

A statement can be spread across multiple lines of your program if you wish, so long as all individua
arguments and keywords within the statement remain intact. A statement should not, however,
begin on the same line as a previous statefherfollowing lines, for example, are valid

CobolScript code:

Paged4 CobolScripfDevel oper é6s Gui de

IF truth_test var
COMPUTE
target - var = SQRT (X)
+1
IF target -var
< SQRT (2)
DISPLAY “Xis less than 2°
ELSE
DISPLAY X >2
END IF
END IF.

The following is not valid CobolScript code, since more than one statement is on a single line:

IF truth_test var COMPUTE target_var = (6 + 2) END - IF.

You should be able to see by now that statements are really just a combination of the program
ekements previously discussed in this chapter, like commands, variables, expressions, conditions, ar
literals, in a way that makes sense to the CobolScript engine. For the exact syntax of each
commandds respectiveéanguagaRetament , see Appendi

Sentences

A program sentence is any phrase, statement, or group of statements in a program that is terminate
with a period.

All sentences must begin after column 7 (the seventh character counting frdraridesldé of
yourtext program file), meaning that the leftmost character in a statement should be in column 8 or
higher.

In CobolScript, each of the following items constitutes a discrete and complete sentence, and
therefore requires a period to terminate it:

¢ AllDivisionand Section titles, .ads anmd O66PVIRCORCKE DNUGR
STORAGE SECTI ON. &obolScepeBasicProgram @austore- ,
information on Divisions and Sections;

T The O0PROOGRAMand 0 AUT HAQdntificatitn®lyisioo areleachi n t h
complete sentences on their own. Also, the argument to each of these keywords is a
complete sentence;

T The 6SOURCE COMPUTER. 6 and 6OBJECT COMPU
Division are each complete sentences on Weirthe argument to each of these phrases
is a complete sentence as well;

All complete FOUFile Description) entries;
All variable definitions, whether gréenel data item or elementary data item;
Module (code paragraph) names;

All completestatements that are not between PERFORM.-EERFORM (an Hline
perform) or IF..ENDIF.

= =4 =4 =

CobolScripfDevel oper é6s Gui de Paged5

T If a statement is nested within aline perform or conditional, periods matbe used.
The sentence in thesePERK@CRM.tBNDdTF ntédhtes s6 w

keywords. If there are multiple levels of nesting, only the outermost level should be
terminated with a period, as in the example that we used previously to demonstrate proper
indentation:

MOVE 20 to x.
PERFORM UNTIL (x < 2)
COMPUTE target var = SQRT(X)
IF target_var < SQRT(2)
DISPLAY x is less than 2
ELSE
IF target_var > (SQRT(4)+1)
DISPLAY x is greater than 9°
END IF
END IF
MOVE target_var TO X
END PERFORM.

Comment s

Commentsaretexth at has no effect on your programods
asterisk (*) in column 7 (the seventh character counting fromthadestde of your program file).
Therefore, any line in a program that has an asterisk in columnigmeitelleby the CobolScript

engine, no matter what other text is on that line.

Wellplaced, meaningful comments are critical to the readability and overall worth of your program.
Explaining difficulto-understand or neimtuitive code with a good commeiit ultimately save
you and anyone who edits your code a large amount of time.

Page46 CobolScripfDevel oper é6s Gui de

CobolScripfDevel oper é6s Gui de Paged7

ICON KEY

A

Important point

Chapter

File Processing and 1/ O

application that has leteym information staige requirements. Almost all business

applications utilize or manipulate external information in some form, and many scientific

programs also have data input and output, so any good programming language must
incorporate commands to enable the procedsiatpdhat is external to the program.

A ccessing and manipulating-desident data are tasks that must be performed by any

All native CobolScript data processing is done with ASCII text files, commonly refdia¢dilgsas
this flat file processing is the primary focus of this chapter. CobolScopiaetlly process data
files that are either fixed field width or siog@acter delimited. If the data in the file is delimited,
the parsingf the fields is handled internally by CobolScript.

The data recordts CobolScript data files are stored sequentially, meaning one after another.
Sequential organization is the most straightforward approach to organizing records within a file; the
operations that can be performed on such a file are necessarily ma€iobatftript, input and

output commands are restricted to efilr®@perations (OPEBENd CLOSE;, entirerecord

operations (READNVRITE, REWRITE, and an operation that moves the file pointer

(POSTION). Nevertheless, if you have previously only dealt with relational database access
methods to retrieve or modify data, you should pay special attention to this chapter, since data acce
methods such as direct SQL calls are siriCthpolScript Professional Edition feature and are not
available from within CobolScript Standard Edition.

It is, however, possible for CobolScript Standard Edition to interact with a relational database, if the
RDBMS (relational database management sgsfmorts stored procedures, these procedures can

be called from the system prompt, and the RDBMS is able to direct the output from stored
procedure calls to flat files. Our interaction technique, which uses a combination of stored
procedure calls andermediate flat files, is described in the last section of this chapter. Since your
actual technique will vary depending on the relational database that you use and any firewall that m:
exist on your network, the information in this section is preatatewre conceptual level than

the other sections in the chapter.

If you are programming with CobolScript Professional Edition, and you want to directly interact with
a relational database using CobolScript LinkiMiakker e mbedded S QLppendixpsabi | i
G and H for instructions on configuring and using LinkKaker

Page48 CobolScripfDevel oper é6s Gui de

Describing Files and Defining Dat a

Before any processing can be done on a data file, you must first describe it usiateareRD

and you must create a recadable that defines the individual fields within each data record. See
theData and Copybook Filesection of Chapter 3 for more details on describing a file and
defining a data record.

Opening Files

Before you can begin readingdiaim a file or writing data to a file, you musbiirsthe file.
Opening a file lets the operating system know that you intend to perform an input or output
operation on that file, and prepares the file for subsequent operations. You caniapen a file
CobolScript foreadingritingupdatingrappending

If you open a file for writing and the file already exists, its contents will be destroyed and a new file
created in its place. Opening a file for reading, updating, or appending, howetdesivitly the
fileds contents.

The DELIMITED WITH clause can be added to an ORfEtement to indicate that a data file is
delimitedmeaning that fields are separated with adiagéeter delimiter that is spedififter the

WITH keyword. The absence of the DELIMITED WITH phrase indicates that the data file has
fixed widthfields, which will be separated based on the individual field sizes in the record definition

Bdow are some examples of each variation of the GRExhent, with and without the
DELIMITED WITH clause:

OPEN test_file FOR READING.

OPEN ‘test.dat” FOR READING DELIMITED WITH .
OPEN “test_file FOR WRITING.

OPEN test_file FOR WRITING DELI MITED WITH °,".
OPEN “test.dat” FOR APPENDING.

OPEN test_file FOR APPENDING DELIMITED WITH °,".

| f youdre working in a Unix environment, Vyo
data files; specificallyadeas well as write permissions must be set on all data files for all file
processing options. Even files that are only opened for reading must have Unix write permissions
set, because early versions of CobolScript used OPEN FOR READING to updatesecds

to read them; to be backward compatible, current versions of CobolScript still support this format.

Closing Files

After you have finished working with a file, you must close it. Closing a file releases the file
descriptoto the operating system; failing to close a file will cause the file to be locked and appear
unavailable to other applications. Here is an example of the Sate8ient:

CLOSE ‘test.dat’.

In the following CobolScriptogram, we simply open and close a file. Since it is opened for writing,
the file will be created if it does not already exist, or overwritten if it does already exist.

CobolScripfDevel oper é6s Gui de Paged9

1lio_file PIC X(n) value 'IO.DAT".
FD io_file RECORD IS 100 BYTES.

OPENio_fleF OR WRITING.
CLOSE io_file.

Reading Records From Files

The READstatement reads one data record from the data file and loads it into the target record
variable. A single READ will read data until it reatihegerminator, at which point it stops. The

line terminator is the ASCII character or character combination that is used by your operating systen
to indicate the end of a line, usually either the carriage return or carriage return and linefeed
charaatrs in combination. The line terminator is not included in the record data.

The AT END clause of the READ statement is an-eapping routine that recognizes when the
endof-file marker has been reached, and executes a specific statement whéiothis owetd

We have chosen to use a MOVE statement in this example; any silnglstatement, such as
DISPLAY or COMPUTE, could be substituted for the MOVE. The clause should be used in most
cases; if the AT END clause is not specified, readobiagd of a data file will cause a CobolScript
error.

Once a data record has been read and the target record variable populated, the component fields o
the record variable can be used like any other variable. Below is some example code that utilizes th
READ statement:

1 test_file PIC X(n) VALUE "TEST.DAT".
FD test_file RECORD IS 100 BYTES.
1 input_record.
5ir_component_1 PIC X(50).
5ir_component_2 PIC X(50).
1 eof PIC 9 VALUE 0.

OPEN test_file FOR READING.

PERFORM UNTIL EOF
READ test _file INTO input_record
AT END MOVE 1 TO eof
DISPLAY "Record component 1 is: ~ & ir_component_1
END PERFORM.
CLOSE test _file.

Overwriting a File

To overwrite a file, just open it for writing and write the new output to tisanfijéhe WRITE
statement. Writing will put data from a source literal or variable into a single record in the file. In

Pages0 CobolScripfDevel oper é6s Gui de

this example, the fields comprising RECSRRIABLE are assumed to have already been
populated:

OPEN test_file FOR WRITI NG DELIMITED WITH .
WRITE record_variable TO test file.
CLOSE test file.

Appending New Records to an Existi|

To append records to the end of an existing file, open the file for appending and write eéach record
the file using the WRITE statement. Each WRITE statement will add the source record to the file as
the |l ast sequential data recor ddatafleHer ed&s t h

1 test file PIC X(n) VALUE “test. dat’.

1 bytes_num PIC 99 VALUE 10.

FD test file record is bytes_num bytes.

OPEN test_file FOR APPENDING DELIMITED WITH °,".
WRITE 12345 TO test file.

WRITE "1234" TO test file.

WRITE "123" TO test _file.

CLOSE test _file.

The following outputhighlighted in gray) will be written to the file test.dat:

12345,
1234,
123,

Each of the three records above is made up of three components: the source literal from the
WRITE statement that created that record, followed by the comntardelmdithen followed by

enough spaces to make the total length of the record equal to ten characters. Note that even when
files are opened as delimftled, CobolScript still righads the record with spaces until it is the

total length declared in the FD statement (in this case, ten bytes). This padding is an intentional
feature of CobolScript, because it simplifies the task of individually updating delimited data records.
This also has relevance if you intend to updaté&ekblifata records created outside of CobolScript;

see the next section on updating redorasore information.

If the DELIMITED WITH option is absent from our code block, as in the following:

OPEN test_file FOR APPENDING.

Then, assuming that the FD statement and everything else in our original block of code does not
change, the following output will be written to test.dat:

12345
1234
123

CobolScripfDevel oper é6s Gui de Page51

Now | etds | ook at a sl
[

I g ht thatis maole up of vofielgsl e x ¢
First, weodl describe th

e file and define t

1 test file PIC X(n) VALUE “test.dat’.
1 bytes_num PIC 99 VALUE 9.
FD test file record is bytes_num bytes.
1 record var.
5 field_1 PIC X(4).
5 field_2 PIC X(5).

Next, wedoll open the file and fihbetaasetbeeise r e
no DELIMITED WITH clause in our OPEN statement:

OPEN ‘test.dat” FOR APPENDING.
MOVE "1 TO field_1.

MOVEtest” TO field_2.

WRITE record_var TO test _file.
MOVE ‘test” TO field_1.

MOVE "1 TO field_2.

WRITE record_var TO test _file.
CLOSE test _file.

The code above would produce the following output in the file test.dat:

1 test
testl

Note that each fieldside a fixed widfiile has, not surprisingly, a fixed width. Therefore, the
second field in the above example always begins in the fifth character of the record, regardless of th
size of the first field.

Now | et 6s tatdh&ppensaf we apperid dedintieethndi instead of fixed widthes.
Wedll first modify the or-degmtedadta: OPEN st atem

OPEN test_file FOR APPENDING DELIMITED WITH °,".
Our record sbuld be two bytes larger than the fixed wedtbrd to account for the two comma
delimiters that will be in each record, so we must also modify the VALUE clause in our bytes_num
variable declaration:

1 bytes_num PIC 99 VALUE 11.
We ould also have changed our bytes num value with a MOVE statement, so long as it preceded

our FD. Either way, with the two above modifications, our code would write the following to
test.dat:

1 test,

Pageb2 CobolScripfDevel oper é6s Gui de

test,1,

You can see that, unlike the fixedwitt, the starting position of each individual field within a
delimitedrecord varies.

Writing to a File by Updating Exi s

In certain situations, you will probably wanpttate a record that already exists in a data file
without appending an additional record to the file. To update a record in a data file, you should first
open the file for update using the UPDATING keyword, as in:

OPEN test_file FOR UPDATING.

Next, you Bould perform reads until you have read the record that you wish to update. Then, using
the REWRITE statement, you can overwrite the old record, as in the following:

REWRITE record_variable TO test file.
Her eds some c othigtechniggetmorelcomptetelz t r at e s

1 eof PIC 9 VALUE 0.
1lrec_found PIC 9 VALUEDO.
1 rec_position PIC 999999.

1 test file PIC X(n) VALUE "TEST.DAT .
FD test_file record is 9 bytes.
1 record_var.

5 field_1 PIC X(4).

5 field_2 PIC X(5).

1 customer_of _interest PIC X(n) VALUE "Dave'.
1 new _field_2 val PIC X(n) VALUE "Davie".

OPEN test_file FOR UPDATING.
PERFORM VARYING rec_position FROM 1 BY 1 UNTIL eof OR rec_found
READ test file INTO record_var
AT END MOVE 1 TO eof
IF field_1 = customer_of _interest
MOVE 1 TO rec_found
MOVE new_field_2_val TO field_2
REWRITE record_var TO test _file
END IF
END PERFORM.
CLOSE test_file.

IF eof
DISPLAY "Customer record of interest was not found.™
END IF.

CobolScripfDevel oper é6s Gui de Page53

Because CobolScript rigiatds delimitegecords with spaces, each record is the exact number of

bytes specified in the length argument to the initial FD statement. This allows any CobolScript data
record, whether fixed format otinéted, to be updated in a simple and efficient manner with a

simple record overlay, and without requiring any complex file reorganization for each update.
However, if you process a delimited data file created with another application such as a Microsoft
Excell CSV (commaeparated values) file, CobolScript updates to this file will usually not work
properly, since each record in the file will have a different byte length (reads and appends to the
unmodified file will work correctly, however). The dasalve copied to a different file via a

Cobol Script program before records can be i
that does this (available in the sample program RECCOPY.CBL):

1 input_file PIC X(n) value INPUT.CSV".
FD input_file R ECORD IS 100 BYTES.
1 input_record.

5 ir_input_1 PIC X(33).

5 ir_input_2 PIC X(32).

5 ir_input_3 PIC X(30).

5 ir_input_4 PIC X.

1 output_file PIC X(n) value "'OUTPUT.CSV'.
FD output_file RECORD IS 100 BYTES.
1 eof PIC 9 VALUEDO.

OPEN input_file FOR READING DELIMITED WITH ..
OPEN output_file FOR WRITING DELIMITED WITH ;.

PERFORM UNTIL eof
READ input_file INTO input_record AT END MOVE 1 TO eof
WRITE input_record TO output_file

END PERFORM.

CLOSE input_file.
CLOZE output_file.

GOBACK.
Rel ative and Absolute File Positior
I f you regularly process a | arge number of

consuming nature séquential searches. As your file sizes increase, sequential search times increas
by a proportional amount; if file sizes grow unchecked, search times will eventually become
unacceptably long. In fact, this is perhaps the most critical limitatiditeoflfitabases, and it is

what prompts many organizations to opt instead for relational databases, more so than data
granularity, manageability, or other considerations.

In CobolScript, flat file search times can be reduced by using the POSITIONtstatesen

statement positions the file pointer at the beginning of a particular record within a text data file in a
single step. If a data file uses a sequential numeric value as the record key value, a record within the
file can be randomly (directly) ased given that key value.

Pageb4 CobolScripfDevel oper é6s Gui de

For COBOL developers, the POSITION statement functionality is similar to relative file processing.
POSITION works with standard text data files. The POSITION statement has two forms:

POSITION data_file AT RECORD record_number.
POSITION data_file RELATIVE OFFSET number_of _records.

The record_number value in the AT RECORD clause must be a positive integer in the range:
(1 <=record_number <= total number of records in file)

The record_number value (and hence the number of iecgrds data file) cannot exceed
2,147,483,647.

The number_of_records value used with the RELATIVE OFFSET clause must be an integer. This
value indicates the number of records, counting from the current record, that the file pointer should
be moved. Thus, value of 1 will shift the file pointer one record forward in the data file; advalue of

1 will shift the file pointer one record back. The number_of_records value must fall within the
absolute range:

(-2,147,483,647 <= number_of records <=2488B,647)

Furthermore, a number_of records value that causes the file pointer to be positioned before the
beginning of the data file or after the end of the data file will cause a CobolScript error.

When using the POSITION statement, the number ofdpaesied in the BYTES clause of the

FD statement for your file must exactly match the number of bytes in the data file record; this value
is used to reposition the file pointer, and a BYTES value that is larger or smaller than the actual data
record sizevill cause the file pointer to be incorrectly positioned.

The following POSITION example uses the AT RECORD clause to access a particular record
based on a sequential key value. The record is then read and displayed. After this, the file pointer is
repodioned to the record prior to the record first read by using the RELATIVE OFFSET clause of
POSITION:

1 filename_var PIC X(n) VALUE “datafile.txt .
1 bytes num PIC 99 VALUE 50.
FD filename_var RECORD IS bytes num BYTES.
1 record_variable.
5 order_nbr PIC 99999.
5 data_var PIC X(45).
1 key val PIC 99999 VALUE 24331.

OPEN filename_var FOR READING.

POSITION filename_var AT RECORD key_val.
READ filename_var INTO record_variable.

CobolScripfDevel oper é6s Gui de Pages5

IF order_nbr = key_val
DISPLAY “For order number * & order_nbr & °, data =" & data_var

ELSE
DISPLAY “Problem with order_nbr values in data file; check file.”
END IF.
POSITION filename_var RELATIVE OFFSET T2.
READ filename_var INTO record_variable.
IF order_nbr = (key_val -1)
DISPLAY “For order number * & order_nbr & °, data =" & data_var
ELSE
DISPLAY "Problem with order_nbr values in data file; check file.”
END IF.
CLOSE filename_var.
STOP RUN.
Rel ati onal Database I nteraction wit
Edition

CobolScript Standard Edition can interact with a relational database if the database supports batch
interaction from the system prompt, and if the database is able to direct the output from these batch
interactions to ASCléxt files. Ideally, the database will also support stored procedures. For table

inserts,abatchrawoadi ng uti | ity Suwilsimpliigtejodr acl eds SQL

Wedve devised a teatohwith Gpholscrigt Standadi avhich Wweadsseribei nt e
further below, but it may not work with your system since every database product is different.

Instead, we recommend you use the LinkMé&ature of CobolScript Professional Edition to
embed SQL callsrdctly into your CobolScript code. If you have CobolScript Professional, read
Appendixes G and H for further information on configuring LinkMalker embedding SQL
directly in your programs.

Note that network security configurations and firewalls stést k@ur access to your database
across your network. Even if you have complete access to your database, if you are using your
CobolScript engine as a sesige language to complement your web server, you should be careful
about which pieces of yalatabase are made visible to the internet through SQL or stored
procedure calls, especially if your database has sensitive data in it.

Regarding database security and information protection, in general, these are complicated topics
beyond the scope of tin@nual. In larger organizations, network and database administration staff
should normally be sought out and included in the deueskimg process whenever there is the

risk, however slight, of revealing sensitive information to the outside wdrltetwiok

administrators will appreciate it if you approach them prior to attempting to implement your idea.

Pageb6 CobolScripfDevel oper é6s Gui de

Wedl |l | ook at the t hr eeedsepbindipdelye excluddelétee 1 nt e
because in most production database cases, deletes are best handled by first updating a table row «
0to be del etedd, and then deleting all such
assume that you are already familiar with SQL @aruhyticular relational database software. You
should also have an understanding of how to write shell scripts for your operating system.

The Unix shell scripts that are included in this section are meant only as conceptual guidelines for
yourdevel opment; the database | ogin portions
relational database product without at least minor modification.

Selects (Queries)

Select statements come in two forms, from a CobolScript perspective: TrasestaichSQL,
and those that require input from a CobolScript program.

Static Selects

Static selects are table queries that dondt
that remains atic in a static query; the query results can change, even if the database remains
unchanged between queries. This is because time constraints can be included in a static query, as
the following SQL statement:

SELECT customer_name
FROM customer_table
WHERE last_updated_datetime > (NOW T 1)

Assuming that the database i $16apabdbetoé¢ da
equivalent of 24 hours prior to now, there is no need for this query to incorporate external inputs. A
Unix shell sqot that directs the output of this static query to a text file would look something like the
script below:

#/bin/ksh
sqllogin 6userid/ passwdé <<EOF >queryresult.dat
SET HEADING OFF
SET ECHO OFF
SET BREAK OFF
WHENEVER SQLERROR pkg_output.screen _wr i t e(6 Dat abase error 6| SC

SELECT customer_name

FROM customer_table

WHERE last_updated_datetime > (NOW T 1)
EOF

Two different approaches can be used to gather the result set from a static query inside a CobolScri
program:

1 The firg approach is to run the query script in batch mode (on a daily basis, for instance)
outside of the CobolScript program. Then, the CobolScript program only needs to open the
data file and process the data. This approach puts the least strain oagbeaddtab

CobolScripfDevel oper é6s Gui de Page57

your system, and returns a query result in the quickest time. The drawback to this method is
that the data is not current at the time the CobolScript program is executed.

1 Alternatively, you can call the shell script from within a CobolSgipnpusing the
CALLst at ement, and then open and read the
using normal file processing methods. H
bit of code that takes advantage of ttwe gapping included in the above shell script.
Assume the shell script above is named query.sh, and is in the same directory as our
CobolScript engine:

CALL “query.sh >error.txt".

OPEN "“error.txt” FOR READING.

READ “error.txt” INTO ERROR - REC AT END MOME Y TOWS - EOF.
CLOSE “error.txt.

MOVE ‘N TO WS - EOF.

IF ERROR- REC(1:14) = "Database error' THEN
DISPLAY ERROR REC
ELSE
OPEN "queryresult.dat” FOR READING
PERFORM UNTIL WSEOF ="Y"
READ “queryresult.dat” INTO QUERY - REC AT END MOVE 'Y" TOWS - EOF
DISPLAY QUERY: REC
END PERFORM
CLOSE "queryresult.dat’
END IF.
STOP RUN.

The results returned by this approach are essentitiltyeredlhe drawback to this type of query i
that it accesses the database every time this program is run.

Dynamic Selects
Dynamic selects are table queries that require external parameters, as in the following SQL stateme

SELECT customer_name

FROM order_table

WHERE customer_id = $customer_id_var
AND order_number > $order_number_var

Here, the fields $customer_id_var (the value assigned to the shell script variable customer_id_var)
and $order_number_var are passed in to the query from ahsotecedin this case, the shell
script).

Hereds our new shell script to handle the a

#!/bin/ksh
customer_id_var=$1
order_number_var=$2

Pageb8 CobolScripfDevel oper é6s Gui de

sqllogin 6userid/ passwdé <<EOF >queryresult.

SET HEADING OFF
SET ECHO OFF
SET BREAK OFF

dat

WHENEVER SQLERROR pkg _output.screen_write(o6Dat

SELECT customer_name

FROM order_table

WHERE customer _id = $customer id var
AND order_number > $order_number_var
EOF

This script is dependent on two input pararaé¢$l and $2), which are then assigned to our two
variables. The variable values are inserted into the WHERE clause, thereby changing our query
condition and result based on external values.

Unlike static queries, dynamic selects must always begokeatdim time the calling program is
, since their result set depends d
a portion of the CobolScript code to call the above shell script:

run

MOVE "~ 610110106° TO cust _id.
MOVE 22345 TO order_nbr.

* We build our CALL argument below. All of the following target
* variables are assumed to be components of the group item
* input_group.

MOVE "query.sh™ TO input_arg_1.

MOVE cust id TO input_arg_2.

MOVE " ° TO input_arg_3.

MOVE order_nbr TO input_arg_4.

MOVE " >error.txt” TO input_arg_5.

* At this point, input_group has a literal value of

* “query.sh 61011016 22345 >error.txt°’

* query.sh are our two shell script param eters that will be used
* inside the WHERE clause of the query.

CALL input_group.

OPEN “error.txt” FOR READING.

READ “error.txt” INTO error_rec AT END MOVE 1 TO eof.
CLOSE “error.txt'.

MOVE 0 TO eof.

IF error_rec(1:14) = "Database error’ THEN
DISPLAY error_rec

ELSE
OPEN “queryresult.dat” FOR READING

i rect |

The

CobolScripfDevel oper é6s Gui de

Pageb9

C

PERFORM UNTIL eof
READ “queryresult.dat’ INTO query_rec AT END MOVE 1 TO eof
DISPLAY query_rec
END PERFORM
CLOSE “queryresult.dat’
END IF.
STOP RUN.

By buildinghe CALL argument in this manner, you can easily pass the values in CobolScript
variables as parameters to shell scripts. These parameters can then be used in select statement
conditions that are inside the shell script.

Inserts

Wedll be doing database inserts a bit diffe
involve much more text input than dynamic select statements do.

A batch ASClfile loading utility will simplify the taskraferting database rows from CobolScript
input. The insert example that we give below assumes that such a utility is available for you to use.

Hereds the i mportant Cobol Script code for o

FD “order.dat” RECORD IS 57 BYTES.

1 order_rec
5 re c_cust id PIC X(10).
5 rec_order_nbr PIC 9(6).
5 rec_order_val PIC 99999.99.
5 rec_tax val PIC 99999.99.
5 rec_salesperson_nbr PIC 9(5).
5 rec_date_and_time_val PIC X(14).
1 order_info.
5 cust_id PIC X(10).
5 order_nbr PIC 999999.
5 order_val PIC 99999.99.
5 tax_val PIC 99999.99.
5 salesperson_nbr PIC 99999.
5 date_and_time_val.

10 date val PIC X(8).
10 time_val PIC X(6).

* First we assign our values to be inserted. This is a simplification;

* Itds likely that you would first collect at | e
* from the user on a web page form or from keyboard input.
MOVE "~ 610110106 TO cust _id.

MOVE 22345 TO order_nbr.
MOVE 199.95 TO order_val.
MOVE 1290 TO tax_val.

MOVE 1226 TO salesperson_nbr.

Page60 CobolScripfDevel oper é6s Gui de

ACCEPT date_val FROM DATE.
ACCEPT time_val FROM TIME.

MOVE order_info TO order_rec.

OPEN ‘order.dat’ FOR WRITING DELIMITED W TH";
WRITE order_rec TO “order.dat".
CLOSE “order.dat’.

CALL “sqlins confidfile.txt order.dat >loadinfo.txt .
DISPLAYASCIIFILE “loadinfo.txt .
STOP RUN.

Most batch loading utilities take a configuration file input and produce one or sevgratdile
Normally, the configuration file names all the other files involved, such as the input data file, the

out put information file, and an output ©&ébad
successfully inserted in the. In the C#thtement above, however, we include the order.dat and
|l oadinfo.txt files to enhance your under st a

configuration file example.

Consult your | oad utilityds dobedosknt ati on f
configuration file.

Updates

Database updates are perhaps the mosnteisve operations to perform using CobolScript.
The technigue we employ to do updates uses portions of both our dynamic selaasartd our
operation technigues.

Wedl |l wuse the following update statement as

UPDATE order_table
SET customer_name = $customer_name_var

,order_val = $order_val var
,salesperson_nbr = $salesperson_nbr_var
,update tme st amp = TO_DATE(6DDMMYYYYhh24missé, $da

WHERE customer_id = $customer_id_var
AND order_number = $order_number_var

As was the case in our dynamic select example, the fields that are preceded by a $ sign are passed
to the update stae ment as shell script variable value
transfer these variables from the CobolScript program to the shell script, rather than pass all of these
variables as parameters to the shell script.

The new shell spt will extract all of our relevant variables from a data file that we generated in
Cobol Script. Since wedre | ooking at the sh
assume for now that the data file update.dat is a «teitmiged file tht contains our field data in a

single record, and in the following order:

customer_name_var,order_val_var,salesperson_nbr_var,date_and_time_val,customer_id_var,order_number_var

CobolScripfDevel oper é6s Gui de Page6l

The shell script i s bel owcu convmadteexttattaut we 0V e
CobolScript variable values from update.dat. Consult your man pages for an explanation of this

command:
#!/bin/ksh
customer_name_var="cut ifl id 6,6 update.dat’
order_val var="cut ifa id 6,6 update.dat "
salesperson_nbr_var="cut if3 1d6é6, 06 update. dat
date_and_time_val="cut if4 id 6,060 update.dat’
customer_id_var="cut if5 id 6,6 update. dat’
order_number_var="cut if6 id 6,0 update.dat’
sqllogin 6userid/ passwdd <<EOF >updateresult.
SET HEADING OFF
SET ECHO OFF
SET BREAK OFF

WHENEVER SQLERROR pkg _output.screen_write(o6Dat

UPDATE order_table
SET customer_name = $customer_name_var

,order_val = $order_val_var
,salesperson_nbr = $salesperson_nbr_var
,update_timestamp = TO_DATE(6DDMMYYYYhh24missbd,

$date_and_time_val)
WHERE customer_id = $customer_id_var
AND order_number = $order_number_var
EOF

And hereds our Cobol Scri pt cattdesshel soriptésamdmed t h e

update.sh and is located in the working directory of the CobolScript program:

FD “update.dat” RECORD IS 59 BYTES.
1 order_rec.
customer_name_var PIC X(10).
order_val_var PIC 99999.99.
salesperson_nbr_var PIC 9(5).
date_and_time_val PIC X(14).
customer_id_var PIC X(10).
order_number_var PIC 9(6).
1 order_info.
5 customer_name_var PIC X(10).
5 order_val_var PIC 99999.99.
5 salesperson_nbr_var PIC 9(5).
5 date_and time_val.

10 date_val PIC X(8).

10 time_val PIC X(6).
5 customer_id_var PIC X(10).

(G2 IS 2 NG NG NG NG

Page62 CobolScripfDevel oper é6s Gui de

-

C

5 order_number_var PIC 9(6).

* First we assign our values to be updated. Thisis a simplification;
* |tds |likely that you would first collect at | e
* from the user on a web page form or from keyboard input.

MOVE “Larry Melman™ TO customer_name_var.

MOVE 199.95 TO order_val _var.

MOVE 1226 TO salesperson_nbr_var.

ACCEPT date_val FROM DATE.

ACCEPT time_val FROM TIME.

MOVE "~ 61011016° TO customer _id_var.

MOVE 22345 TO order_number_var.

MOVE order_info TO order_rec

OPEN "update.dat” FOR WRITING DELIMITED WITH °,".
WRITE order_rec TO "update.dat'.

CLOSE "update.dat’.

* Since all of our variables were written to a file to be used by the
* shell script, we dondt pass any parameters to
*we call it.

CALL “update.sh>error.txt".

OPEN “error.txt” FOR READING.
READ “error.txt” INTO error_rec AT END MOVE 1 TO eof.
CLOSE “error.txt".
MOVE 0 TO eof.
IF error_rec(1:14) = "Database error THEN
DISPLAY error_rec
ELSE
DISPLAYASCIIFILE “updateresult.dat’.
END IF.
STOP RUN.

Although the code for thgodate technique is a bit more involved than the code for our select and
insert techniques (primarily because we use a data file interface with the shell script in the update,
rather than passing par amet mvards Oftcaursd, ihyeu scr i p
dondt exceed the shell script parameter | im
like the dynamic select example.

CobolScripfDevel oper é6s Gui de Page63

ICON KEY

A

Important point

Chapter

Buil di nBa%eld Systems

CobolScript. Since CobolScript is an interpreted language, it lends itself well to the
debugging and tweaking that are often necessary when outputting HTML documents.
Youdl | fi nd writeanall pieced o CobatScript coeleasdythen ron-and re
run the code in your web browser to see if you get the desired results. CobolScript also has syntax
specifically designed to simplify and quicken the development of web systems, such a3the ACCEP
DATA FROM WEBPAGE statement, the GETENV command, and the GETWEBPAGE
command, all of which are described in this chapter.

T his chapter will describe technighascan be used for building vieised systems with

| f youdre still confused about why you need
answeristhatyounadt , i f all that youd6re interested
if you want your site visitors to interact with your web pages in any way; if you want to display or not
display certain HTML based on conditions; or if you want t@huibasedysterthen a

programming language like CobolScript, not just a markup language like HTML, is required.
Furthermore, as you become more familiar with web programming., you will discover that using a
web server and standard browsers to rbolScript welbased systems that are internal to your
organizationirftranets) can be an efficient and economical alternative to systems that have a client
side component that must be individually 1in

CobolScript armally communicates with a web server througlft@3Common Gateway

Interface). The Common Gateway Interface is a type of protocol; it defines a method of interaction
between the web server and external programs, which are normathenaelbgerver in only two
situations:

1 When a form on an active web page is submitted,;

1 When a URL that calls a program (as opposed to a URL that calls a static web page) is typec
into theLocatiotext box, or its equivalent, in a browser.

When data frora web page is sent to a CobolScript program, the data is encoded in accordance witt
the CGI protocol. The CobolScript engine can automatically decode this data stream when it has
been submitted via tRest metladi place each figtldata in a corresponding CobolScript

variable. This makes CobolScript a very easy programming language to use for web and internet
development. Instead of building interfaces to web servers, you can focus your programming efforts
on the business lodi@at belongs in your code.

To run the program examples in this chapter, or to run any CobolScript web programs, for that
matter, you must have access to a web server. You must also have installed the CobolScript engine

Page64 CobolScripfDevel oper é6s Gui de

on the same machine asyourweeserv s of t war e, i d elanldiregtoryi lhyou h e v
have installed the CobolScript engine on your PC, you can install web server software on your PC a
well, which will allow you to test your web development code without uploadingféremt d

machi ne. By using a web server on your own
connection to run your code. The Apache web server and derivatives work well for Unix platforms,
and OmniHTTPd is a good web server for WindowBsth ardree. For further information on

how to install CobolScript for use with a web server, $ast#iieng CobolScript section of

Chapter lintroduction to CobolScript/Installation InRefetibtmshe sectiétunning CobolScript

from a Web Serveand Browserin Chapter Z5etting Started with Cobpl&cgeheral

information on steps you must take for your programs to be capable of being run from a browser.

|l nteracting with a Web Server and

Figure 5.1 provides a (simplified) representation of the normal methods by which CobolScript
interacts with a web server and browsers. The browser sends data to the server when a CGI form i
submitted or a freext URL calling a program is completedttaséhformation is then passed

directly from the server to CobolScript. The CobolScript engine interprets the inputs and makes
them available to your CobolScript program. Your program then creates custom web page content,
either based on the browsguis or other information, and delivers this content back to the

browser (actually, this delivery is done via the web server, but this interaction is excluded from the
diagram for the sake of clarity) in the formrafal HTML Virtual HTMLdiffers from static

-)

Web Browser

d CobolScript Program-Calling Events \
_ I I
&

rogram Input
from Browser
Browser Program Inputs

Figure 5.8 A representation of CobolScript program interactions with a web larmivseb server.
HTML in that virtual HTML is HTML code that has been output by a program, while static HTML
resides ian independent HTML file. There is no syntactical difference between the two.

o OUtp»I

/

L

CobolScripfDevel oper é6s Gui de Page65

Creating Virtual HTML

Creating a virtual HTML document is simply a matter of displaying valid HTML to standard output.
The example program below,avhi we &1 | cal |l hell ol. cbl , 1 s v
just this, without any conditions or input processing.

To run the exampl e, f i-omsditectopy. Thenafyou are runningy o u r
your browser and yourwebvwserr on t he same machi nelgopbackd 12°
addreéthe IP address that a machine typically uses to refer to itself), execute the program by typing
http://127.0.0.1/cgibin/cobolscript.exe?hellol.dbin 'y our br owser 6 s URL wi
server is on a different machine than your browser but you know your server IP address, just
substitute that address for 127.0.0.1.

You can also run thisogram from a command line by simply typing the following at the command
prompt:

cobolscript.exe hellol.cbl
This will display the raw HTML output to your command line screen.
Hereds the hellol. cbl code:

DISPLAY "Content - type: text/html

DISPLAY LINEFEED.

DISPLAY "<HTML><BODY>".

DISPLAY "<CENTER>Hello World</CENTER>".
DISPLAY "</BODY></HTML>".

GOBACK.

You can see that the first text we display is the MIME hehdris this exact literal:

“Content - type: text/html

This is followed immediately by the display of a LINEF&#acter. Displaying a MIME header
followed by a linefeed, indicates to the web server that the program outpubtieat Wikt header
will be a certain MIME type of input. In this case (and in the vast majority of your CGI
programming), the MIME typetéxt/htmlwhich means that we intend to output HTML content.
The web server will recognize MIBIE type and pass the remainder of our output on to the
browser as HTML.

ltdés very important to remember to display
linefeed, in the beginning of your CobolScript CGI programs. Failing to dy pivsveat

anything at all from displaying in your browser when you attempt to run your programs; depending
on how your web server is configured, you may or may not get an appropriate error message in you
browser window.

After the program has displayedfathe HTML (which is then transferred by the web server to the
browser), it executes the GOBACK command to terminate processing, and your browser window
will have the phrase oOoOHell o Worldd6é in it.

Page66 CobolScripfDevel oper é6s Gui de

http://127.0.0.1/cgi-bin/cobol.exe?hello.cbl

Creating an HTML Form

If youwant to create a web page that will allow your users to enter data, the simplest way to do this i
by using an HTML form. Forms allow you to create text boxes, text areas, list boxes, check boxes,
and radio buttons to collect data, reset buttons taataantries, and submit buttons to submit the

data to a receiving program. See Chapter 7 for a detailed discussion on how to use each of the forr
components in programs.

The FORM tag, along with its end tag, are used to demarcate the formesdeintialy a data

input area inside an HTML document. Every form has an associated action, this action is specified
in the ACTIONcomponent of the FORM tag. The ACTION argument is an URL that names a

CGI program that il be executed when the browser user submits the form. In the case of the
program bel ow, whi ch we @binkobatseript.exe?hedid2.tbb ththis b | ,
example, when you submit the form on your web browser, it will run theligdlogram again.

Of course, since incoming data is not processed by this program, the data typed in the text box is lo:
after the form is submitted.

Hereds the code for hell o2. cbl

DISPLAY "Content - type: text/html’.
DISPLAY LINEFEED.

DISPLAY "<HTML> <BODY>".

DISPLAY "<CENTER>Hello World</CENTER>".

DI SPLAY ~<FORM AQTInNON=o0oclgsicri pt. exe?hell o2.cbl o
& ‘"METHOD=POST>".

DI SPLAY "~ <I NPUT TYPE=TEXT NAME=0O0my_variableo>".

DI SPLAY "~ <I NPUT TYPE=SUBMI T VALUE=0CIlIick here to

DISPLAY '</FORM>".

DISPLAY "</BODY></HTML>".

GOBACK.

The program above uses a simple text box (created by INPUT TYPE=TEXT) to collect

i nformati on. Youd !l | nadumnentassdaciatediwithtt, flarethieite x t b
name is my_variable; this is@it& field nam&he CGl field name is the name of a CGl variable

that will hold the contents of the text box when the form is submitted from the web page.

Capturing I nput Data from a Web Paq

At this point, youdre probably wondering ho
CobolScript program. In CobolScript, when your program needs to get form data from a web page,
you just use a spedtam of the ACCEPBtatement called ACCEPT DATA FROM WEBPAGE.
Hereds an exampl e:

ACCEPT DATA FROM WEBPAGE.

This command will get the CGI data that was submitted, parse it, decode it, and place the contents i
CobolScript variables thaivie the same names as the incoming CGl variables.

CobolScripfDevel oper é6s Gui de Page67

To accept data from a CGI form into a CobolScript program, you must define variables to capture
the contents of the incoming CGl variables. The CobolScript variables must have the same names
astheCGlvara b | es. The program in this section,
called omy_v-aamalll EobohSorapti @ byte al pha
here:

1 my variable PIC X(40).
1 content_length PIC 9(05).

fyou | ook at our hell o3.cbl code segment be
before we accept the CGI data from the web page. This command gets the value of the web server
environment variable that is specified as the GETENV argumeraiaasdtslcontents into a

CobolScript variable. The environmental variable CONTENT_LENGTH holds the CGI query

stringds actual | ength. The query string I
data to a target program, so if this the leriglts string is greater than zero, we know that there is
data to accept. ltds good practice to get

your CobolScript program, because by doing this, you know whether or not there is CGI data
waiting for ya to process. If the value of CONTENT_LENGTH is zero, then you know that the

user is simply running your web based application for the first time and has not submitted a form on
it. If CONTENT_LENGTH is greater than zero, then you know that the usartiragted a

form from your application.

The ACCEPT DATA FROM WEBPAGE command handles all of the pafsigPOST
methodss ubmi tt ed data internally, so you donodt
to the web seer.

Hereds the rest of the code for hell 03. cbl

GETENV USING "CONTENT_LENGTH® content_length.
IF content_length >0

ACCEPT DATA FROM WEBPAGE
END IF.

DISPLAY "Content - type: text/html’.

DISPLAY LINEFEED.

DISPLAY <HTML><BODY>".

DISPLAY '<CENTER>Hello World</CENTER>".
DISPLAY "my_variable: * & my_variable.

DI SPLAYLF ~ <FORM AKCITA /ONc®dIlcgdri pt. exe?hell 03. cbl ¢
& "METHOD=0POSTO0>"

DI SPLAY ~ <I NPUT TYPE=O0TEXTO60 NAME=0my variableo V.
& my_variable & ~0>".

DISPLAYLF <INPUTTYP E=0SUBMI Td VALUE=0Click here to Submnm

DISPLAYLF "</[FORM>",

DISPLAY "</BODY></HTML>".

Again, if CONTENTLENGTH is greater than zero, there is CGI data waiting to be accepted, and
therefore the ACCEPT DATA FROM WEBPAGE statement should be executestat&ément
will look at the CGI data stream being sent from the web server, decode it, and match the CGI form

Page68 CobolScripfDevel oper é6s Gui de

variable names with CobolScript variable names. That is why both the CobolScript variable and the
form field are named my_variable. Becaussttteeaames correspond, the data associated with

the form fieldmy_variabidl be moved to the contents of the CobolScript vanmgbleariablall

decoding and parsiofithe CGI data stream is performed automatically.

Important note: The maximum elementary variable size in CobolScript is 2,000 bytes. If you happer
to have an individual CGl field that has contents greater than 2,000 bytes, only the first 2,000 bytes
of data will be stored in angget CobolScript variable that is an elementary data item. The rest will

be truncated.

DI SPL&AXYd DI SPLAYLF

The DISPLAYand DISPLAYLFEommands differ most significantly in the way they handle group
items. This has special relevance in the context of CGI development, since you may or may not
want your HTML output to have line breaks in it that makes it more readable. The différences in
two are:

1 The DISPLAY command will print a literal or the contents of any variable to standard
output. After all of the arguments to DISPLAY have been displayed, a linefeed character
displays, terminating the output. In the case of algra@liplatéem DISPLAY, all
individual components of the group item will print on the same line.

1 The DISPLAYLF command will print a literal or the contents of a variable to standard
output, followed by an ASCII line feed character between each individual cavhponent
grouplevel data item, or each individual argument, if multiple arguments are specified. After
all of the arguments have been displayed, another linefeed character is displayed to complet
the output.

Letds take a | ook at [chdisplaiptheSdtowiAggrelgyveldataD| SPL A
item. Note the use of the Implied PIC X(n) FILLER varigtgdained in theariablessection
of Chapter 3):

1 form_var.
5 "<FORM ACTION=cobolscript.exe?test.chl METHOD=POST>".
5 <INPUT TYPE=TEXT NAME=field1>".
5 <INPUT TYPE=SUBMIT VALUE=Submit>".
5 </[FORM>",

The statement DISPLAY form_var will produce the following output (all on a single line):

<FORM ACTION=cobolscript.exe?test.cbl METHOD=POST><INPUT TYPE=TEXT NAME=field1 ><INPUT TYPE=SUBMIT VALUE=Submit></FORM>

The statement DISPLAYLF form_var will produce the following output:

<FORM ACTION=cobolscript.exe?test.col METHOD=POST>

CobolScripfDevel oper é6s Gui de Page69

<INPUT TYPE=TEXT NAME=field1>
<INPUT TYPE=SUBMIT VALUE=Submit>
</[FORM>

Retrieving Web Pages

If you ever need to build an application that retrieves web pages, you can use the GETWEBPAGE
command. It connects to a web server, retrieves a given web page, and savespetifiediser
file.

The pogram below called WEB.CBL demonstrates the usage of the GETWESirAGENd.

It utilizes a standard data structure called TRETRJRN-CODES. This group level data item will
be populated with information from the specific web sexwerg accessing. TCIRETURN

CODE is a number, while TCPRETURNMESSAGE is a string. Typically a successful return
code for this operation will be zero, and the return message will contain a string describing the
number of bytes received for a paldgicweb document.

Hereb6s a portion of the code for WEB. CBL:

1 TCPIP - RETURNCODES.
5 TCPIP - RETURNCODE PIC 9(07).
5 TCPIP - RETURNMESSAGE PIC X(255).

MOVE “www.deskware.com™ TO host_name.

MOVE “/cobol/cobol.htm™ TO web_page_name.

MOVE “web.txt” TO fi le_name.

DISPLAY "< host_name *>".

DISPLAY "< web_page name ">".

DISPLAY ‘< file_name *>".

GETWEBPAGE USING host_name web_page_name file_name.
DISPLAY "TCPIP - RETURNCODES: * TCPIP - RETURNCODES.
GOBACK.

The host name in this example is a fully qualdredin namé www.deskware.com. It is also

acceptable to specify a raw IP address as the host name argument. The file name argument is use
create a file with the HTML that you are retrieving. The named file is overwritten each time the
GETWEBPAGEcommand is executed.

Page70 CobolScripfDevel oper é6s Gui de

CobolScripfDevel oper é6s Gui de Page71

ICON KEY

A

Important point

Chapter

Net wor k and I nternet
Programming Usindg Cobol Sc

programming language can addresswiee requirements of internet information

systems, few languages can satisfactorily address the interface and networking

requirements of internet systems, at least not without compromising platform
independence. With CobolScript, however, you cdertfées, receive and deliver email messages,
and conduct poirtb-point communications with other computers, all by using standard CobolScript
commands. Because these commands all use the TCP/IP protocol or extensions such as FTP,
SMTP, and HTTP, croeggatform communication is handled the same way aplatore
communication.

While a combination of static HTML pages and basic CGI programs written in nearly any

This chapter provides some basic examples of how to transfer files, send and receive emails, and
program TCP/IP sockets. By learning and expanding on these examplese\ahlentti breate,
in CobolScript code, the interfaces that your system requires.

Transferring Files using FTP

Sharing files is one of the fundamental motivations for networking computers. FTP (File Transfer
Protocol) is a prototfor transferring files over a TCP/IP network. FTP is an effective way to
share data between heterogeneous network hosts. CobolScript has commands that allow you to
program FTP clients to transfer files to and from FTP servers.

Most computers on thaternet support FTP access. Before you can build a program that will
access files on these FTP servers, however, you will need the following:

1 The name of the system on the network that has the files you want to obtain, or on which
you want to place filel other words, you need to know the fully qualified domain name
or IP address of the host that you want to transfer files from and to.

1 A valid user name and password to use on the remote computer. Many remote computers
will allowanonymousvitipich allows you restricted FTP access by using the user name
anonymous and your email address as the password.

FTP is extremely useful for transmitting data rapidly between sites that need to share information
system data. UsiR@P eliminates many usual considerations when transferring files. By using FTP:

Pager2 CobolScripfDevel oper é6s Gui de

T You wondét need to worry about requiring
to transfer files;

T You wondét have to break wspe at fe llearignetro fsi
a single disk or as an email attachment.

CobolScript programs that transfer files using FTP commands can be scheduled to run at regular
time intervals. This is allows you to have unattended file transfers between hosts.

When you try to connect to a remote computer using FTP, you will need to supply a valid user name
and password. The CobolScript command FTPCONNEGE command you should use to
l ogin to an FTP leserver. Hereds an examp

MOVE “deskware.com™ TO host_name.
MOVE “anonymous’ TO user.
MOVE “interpreter@deskware.com”™ TO password.

FTPCONNECTUSING host_name user password.

After you have connected to an FTP server, you should set thetyraasfehis is done with the
FTPASCIlor FTPBINARYcommands. If you will be transferring plain ASCII text files, you

should use FTPASCII. By doing this, the server knows to converttinafil&SCIll format that

your client computer can read. This is important because ASCII files on Windows machines are line
terminated with carriage return and line feed ASCII characters, andbaséthimachines, ASCII

files are line terminated with dimlg feed characters. If you are connecting to a mainframe, text

files are stored in EBCDIC format. Using the FTPASCII command before you transfer text files

will ensure that you receive them in the ASCII format that is native to your client msiogine. U

the FTPASCII command is as simple as the following statement:

FTPASCII .

If you need to transfer binary data such as word processing documents or spreadsheet files, you
should use the FTPBINARROmmand before transmitting files. This ensures that no ASCII
translation is performed on your file during the transfer.

Another useful command is FTPCDallows you to change the directory on the FTP server that
youar e connecting to. Hereds an exampl e:

FTPCD USING " \ ftp \ data \ interfaces’.

You should make sure that you use the correct directory naming structure for the FTP host that you
are connecting to. The above example is a direoeyon a Unix based host. If it were a

Windows based server, you might use something\ld&adlesoutput’, or on a mainframe you

mi ght wuse "~ 06idy2v.data.acct o .

The FTPGETand FTPPUTommandsctually perform the file transfer operations. You should
use FTPGET to get a file from an FTP server, and FTPPUT to send a file to an FTP server. Here
are examples of these commands in complete statements:

CobolScripfDevel oper é6s Gui de Page73

FTPGET USING or der.dat'.

DISPLAY "FTPGET TCPIP- RETURNCODES: * & TCPIP - RETURNCODES.
FTPPUT USING “order.dat’.

DISPLAY "FTPPUT TCPIP- RETURNCODES: * & TCPIP - RETURF CODES.

Using Email Commands

Although you may never have thought of email as a system interfacing tool, this is in fact what it is,
because email allows users to send and receive messages from a local machine to recipients on
destination hosts, regardiafgslatform. Even if the email message is only textual, and is only meant
to be read by the recipient and not cause any direct system action, the delivery and receipt of the
email constitute a system interface.

A standard email message without attackisesitnply a text file, made up of header lines that tell
an email server how to deliver the message, and of the message content.

SMTPis an acronym for Simple Mail Transfer Protocol and POP3 for Post Office Protocol 3; they
are the standard TCP/IP protocols for sending email and receiving email, respectively. CobolScript
uses these protocols in its email commands, which enableinigeaseheceiving of simple email
messages.

To use CobolScript to build programs that send email messages, you will need access to an SMTP
server. Once you have this, you can use the CobolScript SENfakhiiand to send email.
Hereds an exampl e:

COPY ‘tcpip.cpy’.

1to_addresses.
5 “<nobodyl@tttit.com>".
5 "Nobody <nobody2@ttttt.com>".
5 “nobody3@ttttt.com’.

1 from_address PIC X(n) VALUE “youremail@yourhost.com'.
1 subject PIC X(n) VALUE ‘mail.cbl test'.

1 message.
5 "This is a test message from mail.chbl.".
5 FILLER PIC X VALUE LINEFEED.
5 “Sent from me to you.".

1 smtp_server PIC X(n) VALUE “yoursmptserver.com'.

SENDMAIL USING to_ad dresses
from_address
subject
message
smtp_server.
DISPLAY "TCPIP - RETURNCODES: " & TCPIP - RETURNCODES.

Pager4 CobolScripfDevel oper é6s Gui de

Of course, you would substitute your addresses and message for the above addresggs and mess

With CobolScript there are two commands for retrieving email messages, GEIWMIland
GETMAIL. The GETMAILCOUNT command connects to your mail server and determines the
number of messages in your inbox. The GETMAIL command retrieves a copy of a specific emalil
message and saves its contents to a text file. GETMAIL does not reemoed thessage from

the server. Here is an example of how to use these commands:

MOVE “youremail@yourhost.com™ TO email_address.
MOVE ‘yourpassword” TO email_password.
MOVE 0 TO email_count.

GETMAILCOUNTUSING email_address
email_password
email_count
smtp_server.
DISPLAY "Email count: ~ & email_count.
DISPLAY "TCPIP - RETURNCODES: " & TCPIP - RETURNCODES.

MOVE “youremail@yourhost.com™ TO email_address.
MOVE “yourpassword™ TO email_password.
MOVE 1 TO email_number.
MOVE "mymail.txt” TO email_file_name.
GETMAIL USING email_address
email_password
email_number
email_file_name
smtp_server.
DISPLAY TCPIP - RETURNCODES: * & TCPIP - RETURNCODES.

When the GETMAILcommand retrieves an email message from a server, it appends the message tc
the specified text file. This means that if you want to retrieve a copy of all of your email messages,
you should use GETMAILCOUNID find out how many messages there are, and then perform a

loop that retrieve each message. If you want each message to be in a separate text file, you should
use a new text file name each time you call GETMAIL.

Important Note: When you are sending emails it is important to use a vakeiSTRsenerally it
works best if your applications send all emails through your SMTP server, and then your SMTP serv
delivers the email to the user.

CobolScripfDevel oper é6s Gui de Page75

Using TCP/ I P Commands

Several TCP/IP commands are available in CobolScript. They can besosket farogramming
and obtaining DNS information about a host. They are:

GETHOSTNAME
GETHOSTBYNAME
CREATESOCKET
BINDSOCKET
LISTENTOSOCKET
CONNECTTOSOCKET
ACCEPTFROMSOCKET
RECEIVESOCKET
SENDSOCKET
SHUTDOWNSOCKET
CLOSESOCKET

=4 =4 4 4 -4 4 -4 -5 45 -2 -9

DNS Commands

The program below (which is the DEIBL sample program) demonstrates how to use the
GETHOSTBYNAMEcommand. You can run this program from your web browser by typing in
the URL http://127.0.0.1/cgibin/cobolscript.exe?dns.dbyou are running CobolScript and a web
server on your local machine.

Both GETHOSTNAMEand GETHOSTBYNAMEequire two special group level data iiems
TCPIRHOSTENT and TCPIFRETURNCODES. These data structures are placeholders for

return values that are populated when these commands are executed. The structures must be in yc
program in order for it to run properly when you use these commands.

GETHOSTNAME gets the TCP/IP hostnanfrem your local machine and place the name in a
CobolScript variable. The GETHOSTBYNANta much more advanced command. It contacts
your DNS(Domain Namé&erver) and retrieves detailed information about a specified host name. It
retrieves information such as aliasdshost addresses associated with a particular domain name. Try
running this example with some domain names like lycosyaimo.com.

Here are the variable definitions for DNS.CBL. Note the two standardized TCP/IP structures that
we mentioned earlier. These would normally just be placed in a copybook by themselves, such as
tcpip.cpy, but we include them here to showdétziil:

Pager6 CobolScripfDevel oper é6s Gui de

http://localhost/cgi-bin/cobolscript.exe?dns.cbl

*hkkkkkkkkhkhkhkhkkkkkhxk * * *

* TCP/IP *

* DATASTRUCTURES *
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

* GETHOSTBYNAME REQUIRES THE DATA *
* STRUCTURE BELOW. DO NOT CHANGE IT *

B ey iy ey e e T e T e

01 TCPIP - HOSTENT.

05 TCPIP - HOSTENTHOSTNAME PIC X(255).
05 TCPIP - HOSTENTNUMALIASES PIC X.
05 TCPIP - HOSTENTALIASES OCCURS 8 TIMES.
10 TCPIP - HOSTENTALIAS PIC X(255).
05 TCPIP - HOSTENTADDRESSTYPE PIC 9(7).
05 TCPIP - HOSTENTADDRESSLENGTH PIC 9(7).
05 TCPIP - HOSTENTNUMADDRESSES PIC X.
05 TCPIP - HOSTENTADDRESSES OCCURS 8 TIMES.
10 TCPIP - HOSTENTADDRESS PIC X(255).

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

* TCP/IP RETURN CODES DATA STRUCTURE *
* DO NOT CHANGE. *
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
01 TCPIP - RETURNCODES.
05 TCPIP - RETURNCODE PIC 9(7).
05 TCPIP - RETURNMESSAGE PIC X(255).

* Program - specific variables

kkkkkkkkkhkkkkkkkkkkkhkhkhkkkkkkkkkkhx

1 content_length PIC 9(05).

1 web_header_html.
5 Content - type: text/html’.
5
5 <HTML><BODY>".
5
".
5 “Sample CobolScript DNS Application".
5

".
5 "Enter a Fully Qualified Domain Name or an IP address and then®
5 click on the Resolve button.”.
5 <FORM ACTION="/cgi - bin/cobolscript.exe?dns.cbl" METHOD="POST">".
5 <INPUT TYPE="TEXT" NAME="host_name" SIZE=60 VALUE="".
5 host_name PIC X(80) VALUE “www.cornell.edu’.
5>
5 <INPUT TYPE="SUBMIT" VALUE="Resolve">".
5 </[FORM>".
5 <HR>".

1 web_footer_html.
5 </BODY></HTML>".

CobolScripfDevel oper é6s Gui de Pager7

Her eds ourh noafi nc opdaer afgoora pDNS. CBL . Since weor
we first use the GETENYV statement to determine whether we have input or not (see Chapter 5) and
the output that we display is HTML:

MAIN.
GETENV USING "CONTENT_LENGTH® content_le ngth.

IF content_length >0
ACCEPT DATA FROM WEBPAGE
END IF.

IF host_name = SPACES
MOVE “www.cornell.edu” TO host_name
END IF.

* Populate TCP/IP structure that is defined in included copybook.
GETHOSTBYNAME USING host_name.

DISPLAYLF web_header_html.
PERFORM DISPLAYTCPIP- INFO.
DISPLAYLF web_footer_html.

GOBACK.
The code module below displays each of the TCP/IP variables that are populated by the call to
GETHOSTBYNAME, i n an HTML table format. Wedr e
here because of its repetitive nature, but the entire code is in the DNS.CBL sample program:

DISPLAY- TCPIP- INFO.
1 counter PIC Z9.
DISPLAY "<TABLE BORDER=1 BGCOLOR="CCCCCC">".
DISPLAY "<TR BGCOLOR="lightgreen">".
DISPLAY "<TD>host_name:</TD>".

DISPLAY "<TD>" & host_name & "</TD>".
DISPLAY </TR>".

DISPLAY "</TABLE>".

TCP/IP Socket Commands

CobolScript has commands for several TCP/IP socket operations. Socket programming is very
similar to file 1/0, except socket programming reads from and writes toisetdatisof files. A

Pager8 CobolScripfDevel oper é6s Gui de

socket is an endpoint of communicati,
interface.

created

in softwar e, and

We have provided two sample programs that, when combined, demonstrate the use of socket
operation$ the first program is a socket server, and the second is its client. Mh®gewe

should first be run from one command prompt window, and then the client program run from
another . After they have both started, you can type a string in the client window that will be sent via
TCP/IP to the server. This example can easilpbified to communicate with clients and servers

on different platforms simply by changing the IP address (host name) parameters.

The server program (the sample program SERV.CBL) requires the same set of TCP/IP data
structures that we defined in the presijodiscussed DNS.CBL program, as well the following user

defined variables:

1 host_name PIC X(80).
1 socket_num PIC 9(2).
1 connected_socket_num PIC 9(2).
1 port_num PIC 9(5).
1 backlog_num PIC 9(2).
1 string_var PIC X(10).
1lreceive_string PIC X(20).
1 send_string PIC X(20).
Hereds the main code.

Not e

the order of t h

BINDSOCKET, LISTENTOSOCKEY), which is necessarnygetfor the socket before a
connection can be accepted using ACCEPTFROMSOCKET:

*kkkkkkhkkkk kkkkkkkhkkkkkkkhkhkkkkhkkhkhkhkkkkkhkhkhkhx

* This program requires that you have TCP/IP running
* on your machine.
-
MAIN.
GETHOSTNAME USING host_name.
DISPLAY "Starting Deskware Server on ~ & hos

MOVE 1 TO socket_num.

MOVE 2 TO connected_socket_num.
CREATESOCKET USING socket_num.

DISPLAY "CREATESOCKET return code = <" & TCPIP

MOVE 2500 TO port_num.
BINDSOCKET USING socket_num port_num.
DISPLAY "BINDSOCKET return code = <" & TCPIP

MOVE 1 TO backlog_num.

LISTENTOSOCKET USING socket_num backlog_num.
DISPLAY "LISTENTOSOCKET return code = <" & TCPIP

t_name.

- RETURNCODE & *>'.

- RETURNCODE & ™>".

- RETURNCODE & *>".

DISPLAY "Waiting to accept socket connection on port ~ & port_num

CobolScripfDevel oper 0s

Gui de Pager9

&

ACCEPTFROMSOCKET USING socket_num connected_socket_num.

DISPLAY "ACCEPTFROMSOCKET return code = <" & TCPIP - RETURNCODE
&>

MOVE SPACES TO recei ve_string.
PERFORM ACCERTTCPIP- CONNECTIONS UNTIL receive_string(1:4) = "STOP".

DISPLAY "Shutting down Deskware Server .

SHUTDOWNSOCKET USING connected_socket num 1.
CLOSESOCKET USING connected_socket_num.

SHUTDOWNSOCKET USING socket_num1.
CLOSESOCKET USING socket_num.
GOBACK.

ACCEPTTCPIP- CONNECTIONS.
MOVE SPACES TO receive_string.
RECEIVESOCKET USING connected_socket_num receive_string.
DISPLAY "TCP/IP return code = <" & TCPIP - RETURNCODE & ™>".
DISPLAY "TCP/IP return message = < & TCPIP - RETURNMESSAGE & ™>".

DISPLAY “This was received: ~ & receive_string.

MOVE "GOT IT" TO send_string.

SENDSOCKET USING connected_socket_num send_string.

DISPLAY "TCP/IP return code =< & TCPIP - RETURNCODE & ™>".
DISPLAY "TCP/IP return message = <" & TCPIP - RETURNMESSAGE & *>".
DISPLAY "This was sent: ~ & send_string.

Page30 CobolScripfDevel oper é6s Gui de

"4 COBOLS™1

e o @] B E#E] Al

C: \WINDOWS\Deslktop\samples>cobolscript serv
Starting Deskware Server on C476394-B

CREATESOCKET return code = <0000000>

BINDSOCKET return code = <0000000:>

LISTENTOSOCKET return code = <0000000>

aiting to accept socket connection on port 02500...

Figure 6.5 Command prompt with server program running.

The client progim (the sample program CLIENT.CBL) requires the same set of TCP/IP data
structures as defined in DNS.CBL, and also the followirdgtised variables:

1 host_name PIC X(80).

1 socket_num PIC 9(2).

1 connected_socket_num PIC 9(2).
1 port_num PIC Z29999.

1 backlog_num PIC 9(2).

1 string PIC X(10).

1 receive_string PIC X(20).
1 send_string PIC X(20).
1 stop_var PIC 9.

The client code in this example assumes that the clisathangrograms are running on the same
machine (hence the move of the loopback adoltesst name).

Note the interaction points between the previous server program and this client program; the server
uses ACCEPTFROMSOCKETtaccae pt a connection initiated b
CONNECTTOSOCKETstatement. Once the connection is established, the server uses
RECEIVESOCKETto receive the data transmitted from the client using SENDSOCKIEE

the transmission is complete, they reverse, and the server sends the string "GOT IT" beok to the cli
as a way to confirm the data transmission.

DISPLAY "Starting Deskware Client (type STOP to exit).".

MOVE 1 TO socket_num .

CREATESOCKET USING socket_num.

DISPLAY "CREATESOCKET return code = <" & TCPIP - RETURNCODE & ™>".

MOVE 2500 TO port_num.
CobolScripfDevel oper é6s Gui de Pages1

* We are using the loop back IP in this example;
* uncomment the line below and comment out the move
* to actually get the host name
* GETHOSTNAME USING host_name
MOVE "127.0.0.1° TO host_name.

DISPLAY “Your hostname is; ~ & host_name.

CONNECTTOSOCKET USING socket_num host_name port_num.

DISPLAY "CONNECTTOSOCKET return code = <" & TCPIP - RETURNCODE & *>".
DISPLAY TCPIP - RETURNMESSAGE.

PERFORM SENIDATA TO SERVER UNTIL stop_var.

SHUTDOWNSRBET USING socket_num 1.
CLOSESOCKET USING socket_num.
GOBACK.

SEND DATA TO SERVER.
ACCEPT send_string FROM KEYBOARD
PROMPT "Data to send to port 2500: ".

SENDSOCKET USING socket_num send_string.
DISPLAY "SENDSOCKET return code = < "& TCPIP - RETURNCODE & *>'.
DISPLAY TCPIP - RETURNMESSAGE.

MOVE SPACES TO receive_string.
RECEIVESOCKET USING socket_num receive_string.

DISPLAY "RECEIVESOCKET return code = <" & TCPIP - RETURNCODE & ™>".
DISPLAY "This was received: < " & receive_string & ">,
DISPLAY "RECEIVESOCKET return code = < & TCPIP - RETURNCODE & *>".

DISPLAY TCPIP - RETURNMESSAGE.

IF send_string(1:4) = "'STOP" THEN
MOVE 1 to stop_var
END IF.

Page32 CobolScripfDevel oper é6s Gui de

"= COBOLS~1

—o =l lle)] #15 Al

C: \WINDOWS\Desktop\samples>cobolscript client
Starting Deskware Client (type STOP to exit).
CREATESOCKET return code = <Q000000>

our hostname is: 127.0.0.1

CONNECTTOSOCKET return code = <0000000>

Data to send to port 2500: _

Figure 6. Command prompt with clieptogramming.

CobolScripfDevel oper é6s Gui de PageB3

Chapter

Advanced I nternet Program
Technigues Using Cobol Scr

CobolScript. We also briefly discuss the use of embedded JavaScriptholgoupCo

T his chapter discusses advanced techniques for processing internet data retrieval using
programs, for handling tasks suited for eidetprocessing.

Our discussion of CGI data retrieval and processing assumes that the incoming CGI data is always
submitted using the POST method. With the POST methoegndRdted data is delivetedhe
CobolScript program through standard input. The CobolScript engine reads all of this data, decodes
it, and places it in corresponding CobolScript variables.

Al so, all code examples assume t haedinearlerdv e
chapters, i f youdre working in a Unix envir
your Cobol Script internet programs all ow th

All of our web and internet code examplesaatgome that you have not modified your web server
software to make CobolScript your default CGl interpreter. However, making CobolScript the
default CGl interpreter is usually relatively easy, depending on your web server. Doing so will
simplify the UR& you use to call CobolScript programs; instead of calling a program with a URL
such as the following:

http://www.cobolscript.com/cgbin/cobolscript.exe?samples.chbl

You would instead use a URL such as:

http://www.cobolscript.com/cgbin/samples.cgi

Or, if your web server is flexible enough to allow modification to the CGI program extension, even
this:

http://www.cobolscript.com/cgbin/samples.chbl

However, by modifying your web serverds con
interpreted prograsralready existing on the server that relied on the previous configuration, and that
were written in a different language such as Perl (these programs will be treated as CobolScript
programs and will fail to run because they are not valid CobolScrigtsedeur own discretion

Page34 CobolScripfDevel oper é6s Gui de

in making this type of modification; a web system built from scratch, using only CobolScript code, is
an ideal candidate for this kind of configuration change; a web system with existing interpreted code
written in otherlanguage i S not . Consult your web server
how to configure the default interpreter path and the default CGI extension.

Environment sVari abl e

Environment variables are systemivaa b | es t hat exi st within a p.
With regard to a web server, the full set of environment gasabkreated each time a CGI process

is executed. You can think of these variableseisgbifers that a web server uses to pass data about
an HTTP request from the server to the-@@tessing application, i.e., your CobolScript program.

With CobolScript, environment varialdee accessed with the GETENV camdn

GETENV USING <environment variable > <cobolscript variable>.

The names for environment variglalee systegpecific. Fortunately, most web servers have
adopted many of the same names. aiera few of the standard ones; experiment with these
variables in the GETENYV statement to determine the formats of the contents of each of these
variables:

Environment Variable Description

CONTENT_LENGTH
CONTENT_TYPE
PATH_INFO

Ske of the attached incoming CGlI data in bytes (characts
The MIME type of the incoming CGI data
Path to be interpreted by the CGI application.

PATH_TRANSLATED

The virtuato-physical mapping of the file on the system.

QUERY_STRING

The URLencoded string that was submitted to the web s

REMOTE_ADDR

The IP address of the agent making the CGI request.

REMOTE_HOST

The fully qualified domain name of the requesting agent.

REMOTE_IDENT

Data r epor t e donrediainthe gefvee. 3

REMOTE_USER

The User ID sent by the client agent.

REQUEST_METHOD

The request method used by the client. For CobolScript
applications, this shoul g

SCRIPT_NAME

The path identifying the CGI application requested.

SERVER_NAME

The server name of the requested URL. This will either }f
IP address of the server or the fully qualified domain nan

SERVER_PORT

The port where the client request was received by the se

SERVER_PROTOCOL

The name and revision of tieguest protocol.

CobolScripfDevel oper é6s Gui de Page85

Environment Variable Description

SERVER_SOFTWARE The name and version of the server software. For exam
oOmni HTTPd/ 1. 01 (Win32; |

Some web servers do not support all of #regenment variables. You should consult your web
server documentation to find out what environment variables are supported by your specific web
server.

All normal web servers support the CONTENT_LENGTH environment varigdgause of this,
we recommend getting this variable when your CobolScript application is first invoked via a web
server, like this:

GETENV USING "CONTENT_LENGTH® content_length.
IF content_length >0

ACCEPT DATA FROM WEBPAGE
END IF.

By doing this, yowill know if a form was submitted to your application or not. If your application
was called directly from a typed URL, outside of a form submission, the value of
CONTENT_LENGTH would be 0 and you would not need to accept CGI data from the web
server. NMrmally, when the ACCEPT DATA FROM WEBPAGE statement is executed,
CobolScript will begin reading data from the CGI stream and place the contents in the appropriate
Cobol Script variabl es. Of cour se, ttottedeb no't
server.

Sometimes, web servers are configured to not populate certain environmenswehiaisie
REMOTE_HOST. This is often done because there is a time cost in resolving the IP addresses of
each client asrntakes a request. However, you can still resolve these IP addresses by using the
GETHOSTBYNAMEcommand. Simply get the REMOTE_ADDR environment variable that
contains the IP address of the cliewt, e this as the argument to GETHOSTBYNAME:

GETENV USING "REMOTE_ADDR" download_ip.
GETHOSTBYNAME USING download_ip.
MOVE TCPIP- HOSTENTHOSTNAME TO download_host.

The GETHOSTBYNAMEcommand will solve the IP address to its fully qualified domain name,
and the result will be placed in the TGRS TENT-HOSTNAME variable. If the DNS server
cannot resolve the IP address, the TERIBTENT-HOSTNAME will be spaces. Also, for
completeness, the TCPA®&urn code values should always be examined after executing
GETHOSTBYNAME to determine whether the command executed successfully or not.

Page36 CobolScripfDevel oper é6s Gui de

CGl Form Components

As we saw in Chapter 5, the ACCEPT DATA FROM WEBPAGE statement can capture HTML
form data. This data capture can be done from all of the possible submitting form caderinents
boxes, multine text boxes, list boxes, drop down list beagis, buttons, check boxes, and submit
buttons. In this section, we describe how to process input from each of these components. The
example program input.cbl illustrates the data capture for each of these components (except submit
buttons). This sampbeogram can be found in the sample programs included with CobolScript. The
first screen of this sample program is shown in Figure 7.1.

X Metscape

File Edt “iew Go Communicator Help

<« » A4 4 = =+ & B B
Back Fonward Reload Home Search Metzcape Print Securty Shop Stop

wt " Bookmarks \{& Location: Ihttp: #4127.0.0.1/cgi-bindcobolzcript. exe finput. cbl ﬂ @' What's Related
ﬁ Instant Message WebMail Radio People ‘ellow Pages Download Calendar |"_|" Channe

-

CobolScript Data Input Example Application —

fieldl: |

=
field2: | ¢ _'l_l

[tern2
field3: ’ItemS =l

fieldd: [tem11 =

fieldS:

¢ Ttem111
 Ttem222
 Ttem333
 Ttemddd

© Ttem555

field6: ™ Ttem1111
field7: ™ Ttem2222
fieldS: ™ Ttem3333
field?: [Itemd444
field10: ™ Ttem5555
@Iﬁ| |Document: Done

Figure 7.8 Input.cbl sample program, as seen from Netsoapser.

All of the HTML form control tags that we discuss in this section have a common attribute called
NAME. This attributés of the form:

NAME=variable_name

Or, alternatively (quotes can be included or excluded from tag attribute values; they must be include
however, when spaces exist in the attribute

NAME=fAvariable_namebo

CobolScripfDevel oper é6s Gui de Page37

where variable_name is the name of @lev&riable that will be passed to the receiving program

when the form is submitted. The receiving CobolScript program, specified in the ACTION attribute
of the FORM tag, must define a variable for each submitted form control with a NAME attribute in
orde for the ACCEPT DATA FROM WEBPAGE statement to work correctly.

Text Box Input

Text boxes are created with the <INPUT TYPE
form submits a text input named field1, defireze:

<FORM ACTI OMFwm/ cgpibol script.exe?receive.cbl o>
<INPUT TYPE=TEXT NAME=field1>

<INPUT TYPE=SUBMIT>

</[FORM>

Then, our receiving CobolScript program (which will be named receive.cbl, according to the
ACTION attribute of the FORM tag above) must define a variable named field1:

1fieldl PIC X(20).

In the example program input.cbl, a text box named fieldlagadigp a web browser when the
program is run. When the form is submitted from the web browser, the CobolScript program will get
any data in the text box and place it in a CobolScript variable named field1.

Text boxes can also have preassigned vatueghttive use of the VALUE attribute. In a more
complex example than the one above, a Cobol
a form and calls itself after accepting submitted input from the form, could have some code like the
following:

DI SPLAY "~ <I NPUT TYPE=TEXT NAME=fieldl VALUE=0".
IF fieldl NOT = SPACES
DISPLAY field1
END IF.
DI SPLAY "~ 0>"
DISPLAY "

".
DISPLAY "<INPUT TYPE=SUBMIT>".
DISPLAY "</FORM>".

I n this case, the t eiof(anuivalue)fsdeldViadlaokKall spacés);, b e
otherwise it will be assigned the value of the CobolScript variable field1.

Text Arealnput
Text area controls are eyeated with the <TE

<TEXTAREA NAME=0field26 COLS=20 ROWS=2>
</TEXTAREA>

Our receiving CobolScript program must, in this case, define a variable named field2:

PageB38 CobolScripfDevel oper é6s Gui de

1field2 PIC X(40).

In the example program input.cbl, a text area with the name field2 is dighyesbtorowser

when the program is run. When the form is submitted from the web browser, the CobolScript
program will get any data in the text area and place it in a CobolScript variable named field2. Speci
characters like carriage returns and éds feill be translated into HTML special characters such as
 and
 This is useful when you need to save the contents of a TEXTAREA to a file
and later redisplay them in a web browser. The breaks and tabs will be preserved when you redispl
the HTML.

Because text areas can be large, and CobolScript variables are,fiyx@a majttind that you want

a way to display only the initial populated portion of the text area input. HTML tends to ignore extra
s paces, sullynecessargto alimirate wailing spaces, but you may find it useful when
working inside dynamicadiged HTML tables, since trailing spaces are taken into account when table
elements are sized. The routine below accomplishes this with a PERARRING loop and

the use of positional string referencing

PERFORM VARYING space_location FROM 40 BY 1
UNTIL FIELD2(space_location:1) NOT = SPACE
END PERFORM.

DISPLAY FIELD2(1:space_location)

List and Dropdown List Boxes

List and dropdown | ist boxes are displayed
this:

<SELECT NAME=o0field30 SIZE=3>
<OPTION SELECTED>Item1

<OPTION>ltem2

<OPTION>Item3

<OPTION>Item4

<OPTION>ltem5

<OPTION>ltem6

</SELECT>

field4.

<SELECT NAME=0fiel d4o>
<OPTION SELECTED VALUE=Item11>ltem 11
<OPTION VALUE=Item22>ltem 22

<OPTION VALUE=Item33>ltem 33

<OPTION VALUE=Item44>ltem 44

<OPTION VALUE=Item55>Item 55

<OPTION VALUE=Item66>ltem 66
</SELECT>

To retrieve these CGil fields, our receiving program defines two variables, one for each of the
SELECT tags0 names:

CobolScripfDevel oper é6s Gui de Paged9

5 field3 PIC X(20).
5field4 PIC X(20).

The SELECT tag is relatively straightforward: The valué olptiaa is the text that immediately

follows each OPTION tag, unless a VAlLAtabute is specified in the OPTION tag. When an

option is selected and the controlling form submitted, the SELECT variable is assajueathe v

the option that was selected. By using a list box, you can limit the possible inputs that can be
submitted, and therefore more readily direct processing based on these inputs. For instance, we co
control processing based on the value assigined4 like this:

IF field4(1:6) = "ltem33°

DISPLAY "ltem33 is currently out of stock
ELSE

DISPLAY field4 & * has been ordered for you
END IF.

Radio Buttons

Radio buttons are created withthe <INFUY PE=RADI O é > t ag. They
single option from multiple options; when created properly, only one radio item may be selected fron
all radio buttons that have the same NAME value within a particular form. The VALUE tag is useful
becase you can put a compressed or numeric value in it and display a different text label in your wel
page, like this:

<INPUT TYPE=RADIO NAME=field5 VALUE=111>ltem 111

<INPUT TYPE=RADIO NAME=field5 VALUE=222>Iltem 222

<INPUT TYPE=RADIO NAME=field5 VALUE =333>ltem 333

<INPUT TYPE=RADIO NAME=field5 VALUE=444>ltem 444

<INPUT TYPE=RADIO NAME=field5 VALUE=555>Item 555

After the form is submitted, ACCEPT DATA FROM WEBPAGE will copy the VALUE of the
radio button to the CobolScript variable wighgame name as the buttons, so in this case, the
following CobolScript field definition is required:

5 field5 PIC X(3).

Checkboxes

Checkboxes are created with the <INPUT TYPE
options to be selected or deselected from a group of options. When the form is submitted, those
items that were checked will have their corresponding CobolScript variables populated with the
VALUE specified for that check box item. Here is some exaiiigle far checkbox controls:

FI| ELD </ B> <|I NPUT TYPE=CHECKBOX NAME=0fiel d6
VALUE:oItem1111(‘)>|tem1111

FI ELD7: </ B> <|I NPUT TYPE=CHECKBOX NAME=o0ofiel d7
VALUE=0ltem22220>1tem2222

F| ELD8: </ B> <| NPUT TYPE=CHECKBOX NAME=0ofi el d8
VALUE=0ltem33330>Item3333

FI| ELD9: </ B> <|I NPUT TYPE=CHECKBOX NAME=ofiel d9
VALUE=0ltem44440>1temdd44

Paged0 CobolScripfDevel oper é6s Gui de

FI| ELD10: </ B><|I NPUT TYPE=CHECKBOX NAME=0fiel d1l|
VALUE=0ltem55550>Item5555

FI ELD11: </ B><|I NPUT TYPE=CHECKBOX NAME=0fieldl
VALUE=01660mI6t em666 6

Each checkbox field must have its own corresponding CobolScript variable, like this:

5fieldé PIC X(20).
5field7 PIC X(20).
5field8 PIC X(20).
5fieldd PIC X(20).
5field10 PIC X(20).
5field11 PIC X(20).

CobolScripfDevel oper é6s Gui de Page9l

Using Hi dldegn Fi e

Hidden fields are actually just another type of CGI input, but they are special enough to warrant a
sectiorall their own. They are HTML form fields that are not visible in the browser window, but are
still part of the underlying HTML form. They are useful for storing and passing information to the

4 2 A A e W @ &
i Back Fopyard Reload Home Search Metscape Frint Security Stop

f| Wl Bookmarks A Location: [htp://127.0.0.1/cgibin/cobolscrpt exe Pepib.ctl | 7 What's Related

| =

Update a Problem Tracking Report

Tou must enter a valid email address.

For more mformation on Problem Tracking Eeperts, see the PTR Home Page

IZQDGZDDD

Iinfo@ deskware . com

CE for Windows =

Testing system. ...

Submit Request Reset Form

This program copyright © 2000, Desloware, Ine.

@ == | |Document: Done

Figure 7.3 Web page with hidden fields in the underlying HTML.

recipient program, and they can be used to maintain progtianitgghrough a series of
CobolScriptreated pages without directly displaying all data to the browser window, and without
writing to a temporary file. The sample problem tracking system uses hidden fields in the HTML
forms it displays; figure 7.2 isapture of the Update screen.

Page92 CobolScripfDevel oper é6s Gui de

Figure 7.3 shows the HTML source to the screen in 7.2, complete with hidden HTML form fields.
You can see the fielgisdatecomhdrecokbyn ave a TYPE=0hi ddenad.

ource of: http://www_cobolzcript. com/cgi-bin/cobolscript.exe?eprb_cbl - Hetscape

|»

<HTML >~ BODY:

<BR~BR~CEHTER:-

<FOHT SIZE=4-
<BR:-

Update Trouble Problem Report
<fB>

< fCENTER:-

< fFONT ><HR>

For more information on "Troukle Problem Reports"™
see the Deskware, Inc. <A HREF="coholscript.exe?prbh.chl™s=
TPR Home Page<fA>

<FOBM ACTIOH="cokolscript.exe?eprh.chl"
METHOD="FOZT" >

<IHPUT TYPE="hidden" HAME="update-record” VALUE="T":>
<TABLE BORDER=0 BGCOLOR="r&SScc =

= TABLE BORDER=0 BGCOLOR="655%9cc'

CELLSPACING=0 CELLPADDIHG=O: s
<TR>

<TD>TPE Number:<fFOHT><fTD>

=TD>

B>

0oooooaT

<fB>

<IHPUT TYPE="hidden” HAME="record-key"™ VALUE="
ooooooa7?

FF}

<fFOHT =< fTD>

< fTR>

<TR>

«<TDh>=Date Reported:«<fFONT><fTDh>

<TDh><THPUT TYPE="TEET"™ HAME="report-date’ VALUE="
190319599

" fJEONT = f TD

<fTR>

= TR BGCOLOR=

TEe9S

<TD>=YVour Email Address:<fFOHT><fTD>

<Th><THPUT TYPE="text" HAME="email" VALUE='"
deanfideskware. com

" FEOHT > f TD >~ f TR >

-

e | v

Figue73HTML f orm with hidden fields, as seen

When this form is submitted, the figidlateecordti | | pass a value of 0TO6O
updateecordThe form fieldecokkeywill pass a value of 00000007 to the CobolScript vttt

key These fields are hidden on this form because we do not want them to be edited by the user. The
recoikkyis used to determine which record needs to be updated after the form is submitted. This
program is the Problem Tracking System example applicati®@BPRIEat comes with the sample
programs included with CobolScript.

When you look at the source of the HTML form in Figure 7.3, you will notice that the hidden field
recotkeyappears on three lines, like this:

<I NPUT TYPE=0hiddenokHNARMEMOE=KC OT d
00000007

CobolScripfDevel oper é6s Gui de Paged3

n >

The HTML is formatted in this way because we used DISPLAYLF to display the group level data
item that contained the HTML. Had we used DISPLAY instead of DISPLAYLF, the entire text
would have appeared on a single line. More on tis belo

Hereds a snippet of the Cobol RcokbEy pdrewgr oup i
spread the tag definition across three variables (two of these are implied FILLER variables, but
variables nonetheless). This is a useful technique because it allows you to populate the CobolScrip
variableecofkywith a value before disglag the group item:

5 "<I NPUT TYPE=0hi ddenkoe yNA MEA-LOUrEe=coo r. d
5 record -key PIC9(08).
5 To0>"

Sometimes when interfacing with other systems, particularly those writtehenIRRUT fields

must be on drgyle line. In these cases, use DISPLAY than DISPLAYLF to print the relevant group
item so that it prints on one line. At any rate, CobolScript is intelligent enough to process HTML
forms that contain | NPUT t a grxouaterthisissuegriless o r
you submit CGI data to n€PobolScript programs.

Sending Email from CobBbOSmril pputysi i

As we discussed in ChayieCobolScript has the capability to send simple emails, and this can easily
be linked with data that has been submitted from a form, in order to createeapander. The

sample program email.cbl is an example of how to do this. The progtesample programs

included with CobolScript. Figure 7.4 shows the application screen.

In email.cbl, email is sent using the SENDMs#dtement after fields corresponding to the to
address, froraddress, subject, and message have been accepted from CGI input:

MOVE “yourservername.com™ TO smtp_server.
SENDMAIL USING to_address

from_address

subject

message server.

When sending an email with this command, you must be sure to supply a vakivBMidPe,
which is the name of your sending mail server. CobolScript will then use this server to forward the
email to the recipient.

Paged4 CobolScripfDevel oper é6s Gui de

http: /A, cobolscript. comdegi-bindcobolscript. exe ?email.cbl

Figure 7.4 The email.cbl sample application as seen in Netscape.

Using Cobol Script to Transmit Fil e:

Within HTML, you can provide links to files that can be downloaded by using the anchor tag (), but i f you do this your users wil
when they view your HTML source. If you want to hide the location of your files and regulate who
downloads files from your site, you can build a Cobofogpam to directly send the file to the
userds web browser.

CobolScripfDevel oper é6s Gui de Paged5

CobolScript can be used to send a file to a client web browser. This is accomplished by sending the
appropriate MIME headand tlen using either the DISPLAYFIIJE DISPLAYASCIIFILE
commands, depending on whether the file is binary or ASCII text. The user will be presented with a

0Save Aséod6 dial og box bdakowedtosawetrefilee i n Fi gur
Save As EH
Save jn; I'a “Windows j ﬁl |
1 aimd5 [Cockies
1 Al Users [Crystal
| Application Data [Cursors
|1 Cabs 3 Dezkiop
) Command [Favarites
] Config [Fants
] 13
File name: Iu:u:ul:n:u[Save I
Save as type: If-'all Files [7.7] j Cancel |

Figue78The Save Asé dialog box.

To use DISPLAYFILEBr DISPLAYASCIIFILE you should first build a program that displays a

form that a user will submit when he wants to download a file. Within this formhspecify t
CobolScript program that will use the appropriate command to transmit the file. Typically this form
will contain a submit button, and possibly some additional fields that you will use to validate the user
as in the following:

<FORM ACTI ONMnew/ cgliscri pt. exe?down. cbl o METHOD=0P(
<I NPUT TYPE=0hiddend NAME=0user _ido VALUE=0md8
<I NPUT TYPE=0hiddeno NAME=o0Opassword_ido VALUE=08
<|I NPUT TYPE=0hiddeno NAME=o0fileo VALUE=0budg
<I NPUT TYPE-=dALDUEI=tODOown!| oado>

</FORM>

When this form is submitted, it will run the program you specify in the ACTION attribute of the
FORM tag (down.cbl in this example). Your program can then accept authentication information
and decide whether to transmit thedikbat particular user based on this information. If you
choose to not send the file, you can simply display an error page instead.

After you have validated the authentication information, you can begin transmitting the file to the
user. There are tsteps to this process. First, you will need to display a special MIMEThesder

mi me header i s what prompts the userds web
name that you use in your MIME header willbethd defauf i | e name i n the 0
is very important that the file size in your MIME header matclegacthide size of the file you

wish to transmit; in bytes. I f it doesndt,

Page96 CobolScripfDevel oper é6s Gui de

After you have displayed the appropriate MIME heamlecan use the DISPLAYFIOE
DISPLAYASCIIFILEst at e ment . This will transmit the
browser afterhels;ee ct s t he o0Saved button from the 0Sa

Hereds a Cobol Script code eandtmpDISPLAYRILEh t he
statement (DISPLAYASCIIFILE could be substituted for DISPLAYFILE belbe/fife to be
transferred is a text file):

MOVE “budget.xls™ to xfer_filename

MOVE “octet - stream’ to xfer_method

MOVE 420000 TO xfer_filesize

DISPLAY "Content - type: application/” & xfer_method.

DISPLAY "Content - Disposition: inline; filename=" & xfer_filen ame.
DISPLAY "Content - Description: *~ & xfer_filename.

DISPLAY "Content - Length: * & xfer_filesize.

DISPLAYLF.

DISPLAYFILE download_filename.

By using this technique, you can regulate downloads, and audit which users download your files. Y
can also buildustom text files that will be sent to your users by displaying a MIMEihe daken

displaying individual lines, one line at a time. If you do this, make certain that the amount of data yo
send matches the Contesngth specifieid your MIME header.

Embeddi ng JavaScript in Cobol Script

I n some cases, you may want to have a porti
client machine (t h eidedproaessiagdsrusidmitaskike edit vakdatipns, C
because user feedback can be moteéweahnd can be provided to a user prior to his submitting a
form and reconnecting with the web server.

If you want to use clieside processing with CobolScript, we recommena yidoycembedding
JavaScriph the HTML displayed by your CobolScript programs. JavaScript is relatively independent
of browser manufacturer (it works with current versions of both N&tedpE’), runs on the

cl i ent 8s and & ery bsefal fordasic data validation and checking. By embedding
JavaScrignriched HTML in your CobolScript applications, you can also reduce network traffic
because checks can be performed on the data before it is submitted to the webifgy. pifoces
youdre interested in using JavaScript, a pr
JavaScript for the World Wide/éilable from Peachpit Press.

CobolScripfDevel oper é6s Gui de Paged7

Some situationghere you might want to take advantage of Java&ctipmise that require form

www.cobolscript.com - [JavaScnpt Application]

& “ou must enter an alphabetic first name.

Figure 7.8 JavaScriphessage box.

fields to be populated or data validation of numeric and alphabetic fields. Figure 7.6 provides an
example of a message box generated by JavaScripailgabdata validation.

The JavaScrifiinction that displays this message box is listed below. It is a small function and can
be easily embedded into a CobolScript program that displays HTML to a web browser.

function check_fields(form) {
if
(form.first_name.value==00||escape(form.first
I= nully{
alert(AYou must enter an alphabetic first nan
form.first_name.focus();
form.first_name.select();
return false;

}

CobolScript lends itself very well to displaying web pages, primarily because the natlgeadf group
data items allows entire HTML code segments to be isolated in your program (or in copybooks) in
simple variable definitions. Because of thisgyocreate group items comprised of FILLER
variableghat contain your JavaScdptle, and then just display the group level data item. By doing
this, you can preserve the visual layout of your JavaScragpta@deill be relatively easy to debug

from within your CobolScript program.

Following is an example of a group item named web_page header that contains owatkevaScript
from above:

1 web_page_header.
5 Content - type: text/html".
5FILLER PIC X VALUE LINEFEED.
5 "<HTML><HEAD><TITLE>Validate</TITLE>".
5FILLER PIC X VALUE LINEFEED.
5 "<SCRIPT LANGUAGE=0JavaScripto>".
5 <! gHide script from old browsers’.

5° function check_fields(form) {".

5 if (form.first_name.valu e == Ao .

5 ° | | escape(form.first_name.value). match(AY
5° alert(fAYou must enter an alphabetic first

Paged98 CobolScripfDevel oper é6s Gui de

5 form.first_name.focus();".
5 form.first_name.select();".
5 return false;".

5° }.

5° }.

5 /I End script hiding - >
5 </SCRIPT>".

Letds assume that we saved this variable de
HEADER.CPY. Then, this header and JavaScript are freely available to any CobolScript program,
and including thisflen any Cobol Scri pt programds variab
COPY or INCLUDE statement to reference the copybook in your program code, like this:

COPY "HEADER.CPY".

1 other_stuff PIC 99.

Now, the header data can be displaybdhigtsmall piece of code:

DISPLAYLF web_page_header.

When this statement executes, all of the variables that comprise web_page header above will be
printed to standard output, which in this c
window.

Breaking a web page document into separatelgyeligata items in this manner can make it very
easy to maintain, and using copybooks to store these items can be a real timesaver when modificati
to the group items have to be made.

CobolScripfDevel oper é6s Gui de Page99

Pagel00 CobolScripfDevel oper é6s Gui de

Chapt er

Programming Techniqgues an
Advanced Cobf&FkeSturpes

information on manipulating CobolScript variables using the MOVE statetheist;uess

I n this chapter, we discuss the technique of modular progranpdesgiggm some detailed
some advanced features that make CobolScript a truly unique programming language.

ICON KEY

Designing a Modul ar Program

Modular programming is a way of organizing your program code to make the program easier to
developunderstand, and maintain. A modular program is organized into paragraphs of code called
module$/odules are broken down into lines of code that perform one function or several closely
related functions.

A Important point

Modules are defined by paragraph names indh@fgour CobolScript program. The names of

your modules must start in column 8 and must be less than 80 characters in length. Your module
names should also be descriptive, meaning,

is also helpt to put a comment block right immediately before the module name. This should be a
short description that a programmer can easily read in order to understand what the module does, a
how it does it.

A program should be designed in a hierarchicahfeSpiitting a program up into modules

facilitates the partitioning of logic into individual components that are easy to code and maintain. A
program module should be as short as possible to perform a specific function in an independent
manner. A good gieline is that a module should not be longer than one page of code.

To demonstrate the concept of modular progranmweangll create a program that displays a web
page. The requirements of our programs are as follows:

1 Printa header for our web page
1 Print the body of our web page
1 Print a footer for our web page

CobolScripfDevel oper é6s Gui de PagelO1

(e Medule

/\

Priint Neader Print Becly Print Footer

Figure 8.8 Top-down design

The requirements of our program can be easily broken down into a hierarchy. Théhieuarchy
program is illustrated in Figure 9.1. This hierarchy can then be transformed into modules. We have
named our modules relative to their function. They are as follows:

MAIN
PRINT-HEADER
PRINT-BODY

1 PRINT-FOOTER

= =4 A

MAIN is the main program module. Itiwall each of the three modules in sequence in order to
di splay a simple web page with a horizont al
centered in the page, and a horizontal rule at the bottom of the page.

The PERFORMtatement controls the flow of the program. We PERFORM each of the three
modules and then terminate program flow with the GOBACK statement. Below is a partial listing of
our program (the sample program PAGE.CBL):

MAIN.
PERFORM PRINTHEADER.
PERFORM PRINTBODY.
PERFORM PRINTFOOTER.
GOBACK.

kk

* MODULE: PRINT - HEADER
* Prints header info for the html document.
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkhkkkkkkkkkkkkhkk
PRINT- HEADER.
DISPLAYLF "Content - type: text/html".
DISPLAY LINEFEED.
DISPLAY "<HTML><BODY>".
DISPLAY "<HR>".
DISPLAY "

".

kkkkkkkhkhkhkkkkkkhkkhkhkhkkhkhkhkhrhx *kkkhkkkkkkkkkkkhkx

* MODULE: PRINT - BODY
* Prints body of HTML document
kkk
PRINT- BODY.
1 company_name PIC X(n) VALUE "Deskware, Inc".

Pagel02 CobolScripfDevel oper é6s Gui de

DISPLAY <CENTER>".
DI SPLAY "~ ".
DISPLAY "</CENTER>".

kkkkkkkkkkkkkkhkhkkkkkkkkkhkkhkkkkkkkkk *kkkk * *

* MODULE: PRINT - FOOTER
* Prints trailer info for the HTML document
PRINT- FOOTER.
DISPLAY "

".
DISPLAY "<HR>",
DISPLAY "</BODY></HTML>".

This program is very simple and is meant only to illustrate modularity. It could have been written by
using only one module insteadbur. However, as your programs increase in size and complexity,
modul arity becomes increasingly important
conceptualizing the intricate details of very large programs in our minds alrat tnseeason,

dividing your code into modules allows conceptualization at different hierarchical levels, so that you
well as others will have an easier time creating and maintaining your code. Even when there is not
much code in your program, dingdthe logic up into modules can make it more readable. Also,
modular code can easily be broken apart into separate copybook files later, allowing you to reuse
particular pieces of code across programs using the COPY statement.

Mani pul ating GVabolsberei pt

Basic Moves

Basic moves copy data from one variable to another or from a literal to a variable. The value on the
left willbe copied to the variable on the right:

MOVE "Deskware™ TO name_var.
MOVE compnay_var TO name_var.

Segmented Movs

Segmented moves copy pieces of varmislegmettdarget variables (also known as a reference
modification). The segmented move uses a variable name, a segment starting position, and length.
has the form of variable_name(start : length):

MOVE name(1:4) TO new_name.
MOVE ‘Desk” TO name(5:4).

Segmented moves can only be used on elementary items and are not allowed on group items. You
can accomplish this same type of manipulation by moving a group item to another group item. The
elementary items that are part of the target group itedhsimoply have to have different picture

lengths for each variable.

CobolScripfDevel oper é6s Gui de Pagel03

Elementary Item to Group Item Moves

Moving an elementary item to a group item is a great technique foda@rsigr exartg if you
have a variable that contains a 12 digit phone number you can parse it easily by moving it to a grouy
item:

1input_field PIC X(12).

1 phone_number.
5 area_code PIC X(03).
5FILLER PIC X.
5 prefix PIC X(03).
5FILLER PIC X.
5 exchange PIC X(03).

MOVE input_field TO phone_number.

After this move has been executed, the three parts of the phone number will be placed in the variabl
area_code, prefix, and exchange.

Group Item to Elementary Item Moves

Moving a group item to an elementary item is a good way to build the contents of a variable. For
example, by moving phone_number to input_field we can format a variable:

1 output_field PIC X(12).
1 phone_number .

5°(C.

5 area_code PIC X(03).
57

5 prefix PIC X(03).

5 -

5 exchange PIC X(03).

MOVE "813" TO area_code.

MOVE 555" TO prefix.

MOVE "2494" TO exchange.

MOVE phone_number TO output_field.

The variable output _field will now have a valug@iafsss - 1234

Please refer to the sample program MOVE.CBL for more examples of moving variables.

Advanced Cobol Script Features

These advanced CobolScript features are meant to add flexibility tanguEeath is some
feature not normally present in computer languages that are similar to CobolScript.

Pagel04 CobolScripfDevel oper é6s Gui de

Expression Evaluation within the DISPLAY statement

It is possible to pass raw expressions to the DISRa#&¥ents as arguments. These expressions
will be evaluated by the DISPLAY statement, and the result will display in a ColeditSmtipt
numeric format, with five pedécimal digits. Thus, the following is perfectly acceptable:

MOVE 2 TO radius.
DISPLAY "Area =" & PI(0) * (radius"2).

And this will print the following to standard output:
Area = 12.56637

DISPLAYLF has this same capability.

Expressions as Segment Arguments and Occurs Clause Variable Arguments

Expressions can also be used as arguments to positional string (efecckinesn as reference
modification or segments), and as arguments to decsesvariables, so long as each evaluates to an
integer that is within the appropriate range. For example, the following code block that uses an
expression in a positional string reference is a valid one (albeit a bit unusual):

1 varl PIC X(30) VALU E "ABCDEFGHIJKLMNOPQRSTUVWXYZ1234".
1 counter_var PIC 999.

MOVE 24 TO counter_var.
DISPLAY “varl(2:24) =" & varl(((counter_var/6)/2):counter_var - 1+1).
DISPLAY ‘varl(2:24) =" & varl(2:24).

The screen output for the above code block will be the fgllowin

varl(2:24) = BCDEFGHIJKLMNOPQRSTUVWXY
varl(2:24) = BCDEFGHIJKLMNOPQRSTUVWXY

Both of these values are 24 characters long, beginning with the second character, of varl, since
positional string referencing is always of the form:

string_variable_name(start_ position : length)

The following code block that uses an expression in an OCCURS clause variable is also valid:

1 varl OCCURS 4 TIMES PIC XX.
1 counter_var PIC 999.

MOVE 24 TO counter_var.
MOVE "WW' TO varl(counter_var/12).

DISPLAY ‘varl(2)="&va rL(ROOT ((counter_var/6)"2, 4)).
DISPLAY ‘varl(2) =" & varl(2).

CobolScripfDevel oper é6s Gui de Pagel05

The screen output for this code will be the following:

varl(2) = WW
varl(2) = WwW

Intelligent Variable Parsing

As we mentioned briefly in tBgpressionsand Conditionssection of Chapter @pbolScript

Language Constitistsiot necessary to separate individual expression components with spaces, so
long as a parenthesis or simple-¢nami) operator separates the variable or numeric components.
However, since CobolScript allows dashes in variable names, and the symbol for the dash is the sal
symbol as the minus sign,(expressions can be constructed where their meaning is uncertain. Take
this expression, for example:

(WS VAR 1+2)

If four variables have been defined in a program, one named WS, one named VAR, one named WS
VAR, and the othernamedWS8R-1, it &6s wuncl ear which of the

1 The value in the variable WAR-1, plus 2
1 The value in the variable WAR, minus 1, plus 2
1 The value in WS, minus the value in VAR, minus 1, plus 2

The answer, for CobolScript, is that the first meaning (with the longest variable name) is always
selected, if that variable name is defined. CobolScript uses an intelligent variaidmpdmsing
determine the value of a term likeWAR-1, and this algorithm prioritizes exact variable name
matches over component subtraction. HMARB-1 was not a defined variable, butWi&, WS,

and VAR still were, the second meaning atawid then take precedence. Only in the case where
WSVAR-1 and WS/AR had both not been defined, but WS and VAR had, would the expression
evaluate to the third meaning.

As a result of this variable parsargr messages related to undefined variables will sometimes name
the undefined variable misleadingly. For exanmaeeifthe above variables were defined, but you
attempted to use the expression above in a statement, the error message thatitiestzariable

WShad not been defined, rather thanW#R or WSVAR-1. This is again because of the parsing
algorithm; CobolScript attempts to find matches for smaller and smaller terms separated by dashes;
when the term cannot be deconstructeduaier (in this case, at the point when the term is WS)
CobolScript stops and issues an error message. Since the line number of the error and the error
message (indicating that a variable is undefined) are still correct, correcting this ereomiatsmply

of determining the variable name yoatvant defined, rather than what is indicated in the error
message, and properly define it.

Dynamic File Naming

If you process many files of the same format and layout wittigile program, you know that

processing each file individually can be tedious and lengthy. To avoid this, you must reuse your file
processing statements by placing them within a loop; but for this to work, the file name argument to
your file processingagéments, including the FD statement, must be dynamic. For this reason, we
use the terrdynamic file naming

Pagel06 CobolScripfDevel oper é6s Gui de

To dynamically name files, create a variable that will hold your file name, and then wait to create the
FD for the fileednyolurafikee ypaméveThgesewat k
order on statements in CobolScript programs. For instance:

* file name gldi variable definition
1 file_name_gldi.
5FILLER PIC X(n) VALUE ‘file".
5 counter PIC 99.
5 FILLER PIC X(n) VALUE ".dat'.

* file record definition
1 file_record.
5 field_1 PIC 99.
5 field_2 PIC XX VALUE "AB".

PERFORM VARYING counter FROM 1 BY 1 UNTIL counter > 8
FD file_name_gldi RECORD IS 4 BYTES
OPEN file_name_gldi FORWR ITING
PERFORM VARYING field_1 FROM 1 BY 1 UNTIL field_1 > 10
IF field_1>5
MOVE 'CD" TO field_2
END IF
WRITE file_record TO file_name_gldi
END PERFORM
CLOSE file_name_gldi
END PERFORM.

The examplabove uses a counter variable to manipulate a numeric component of the dynamic file
name, but the file names could also have been read from a file whose records contained the file
names. The file names could also have been stored in an OCCURSwahah@C&URS index

used as the counter variable to the outer PERFORM VARYING loop body.

Refer to the last code example of the next section for a more complex file naming example that mak
use of the EXECUTE statement.

Dynamic Statement Creation andExecution

With most programming languages, the only dynamic components in a program at runtime are
variables that store some type of value or point to a memory address. These variables can be
examined a@haction taken based on their values, but the action itself (i.e., the code) must be created
prior to runtime, and remains static throughout program execution.

In contrast, certain artificial intelligence languages like Prolog also provide the neeaestalexe
statements that are created while the program is running. This is sometimes refgmaohio as
programmindnich roughly means that code statements that are created by a program can then be
executed by that same program.

CobolScript providedynamic programming capability with the EXECUTE statement. The
foll owing code, for instance, has the net e

CobolScripfDevel oper é6s Gui de PagelQ7

1 string_gldi.
5 FILLER PIC X VALUE ACCENT.
5 string_var PIC X(n) VALUE "Hello, world.".
5FIL LER PIC X VALUE ACCENT.
EXECUTE "DISPLAY " string_gldi.

In the above example, the EXECUTE statement has two argubI&REAY " andstring_gldi
Since string_gldi is a variable, the string that is actually processed by EXECUTE (and then directly
executetby the CobolScript engine) is:

DISPLAY "Hello, world.".

This is because all variable values are substituted prior to EXECUTE processing. Properly
accounting for this substitution when using and understanding EXECUTE statements can be
challenging untiby become used to coding in this manner; the following code, which generates the
same OHell o, world.o6 output, illustrates th

1 string_var PIC X(n) VALUE "Hello, ".
EXECUTE 'DISPLAY "~ ACCENT string_var ACCENT " & * ACCENT "world.”
ACCENT.

Of course, neither of the two examples above really demonstrates the utility of EXECUTE, since
both execute a static DISPLAY statement that could have just as easily been coded directly. To
uncover the real value of BREXiEeGhdtTOmamicalgaohdndes | o
the name of the source variable in a MOVE statement that is the variable argument to EXECUTE:

1 move_exec.
5 "MOVE line_".
5 num_position PIC 99.
5 "TO license_line_item’.

1line_01 PIC X(7) VALUE ‘linel11".
1 line_02 PIC X(7) VALUE ’line222".
1line_03 PIC X(7) VALUE ’line333".
1 line_04 PIC X(7) VALUE 'line444".
1 line_05 PIC X(7) VALUE ’line555".
1 license_line_item PIC X(7).

PERFORM UNTIL num_position =5
ADD 1 TO num_position
DISPLAY "'move_exec =" & ACCENT & move_exec & ACCENT
EXECUTE move_exec
DISPLAY ’license_line_item =" & ACCENT & license_line_item & ACCENT
END PERFORM.
GOBACK.

Pagel08 CobolScripfDevel oper é6s Gui de

In this example, multiple MOVE statements are combined into a single EXECUTE statement inside
a loop. The soure@riable component of the MOVE is dynamically changed from line_01 to

line_02, line_03, line_04, and then line_05 because a portion of the source variable name is actually
the value of the loop counter variable. This code produces the following output:

nove_exec = ‘move line_01 to license_line_item’
license_line_item = ‘line111’

move_exec = ‘move line_02 to license_line_item’
license_line_item = "line222"

move_exec = ‘move line_03 to license_line_item*
license_line_item = "line333"

move_exec = ‘move line_ 04 to license_line_item’
license_line_item = "line444°

move_exec = ‘move line_05 to license_line_item’
license_line_item = “line555°

In the previous section, we examined a simple method to dynamically name files. If the file names
vary considerablypwever, naming them becomes more difficult than assigning a counter variable.
An OCCURS variable can be used to store the different filenames, and then the OCCURS index us
to retrieve each file name, but the OCCURS elements would still have teeHeuasgigndividual

MOVE statements. Using a text file to store and access the file names may work well for a large
number of file names, but it can be overkill for a more modest number.

If the number of file names is relatively small, and you prefeghkie list of file names inside the
program that processes them, you can create a-@saydpoup item whose elementary members
are the file names that you intend to process. Then, use the EXECUTE statement to perform a
dynamic MOVE in order to resign the file name variable, as in the following:

1 file_name_list.
5 file_name_01 PIC X(n) VALUE first.dat.
5 file_name_02 PIC X(n) VALUE "second.dat’.
5 file_name_03 PIC X(n) VALUE “third.dat".
5 file_name_04 PIC X(n) VALUE “fourth.dat".
5 file_name_05 PIC X(n) VALUE -fifth.dat".
5 file_name_06 PIC X(n) VALUE “sixth.dat".
5 file_name_07 PIC X(n) VALUE “seventh.dat".
5 file_name_08 PIC X(n) VALUE “eighth.dat".

* file name target variable definition
1 file_name_var PIC X(12).

* file record definition
1 file_record.
5 field_1 PIC 99.
5 field_2 PIC XX VALUE "AB".

* move statement to be executed
1 move_exec.
5 "MOVE file_name_".

CobolScripfDevel oper é6s Gui de Pagel09

5 counter PIC 99.
5 " TO file_name_var'.

PERFORM VARYING counter FROM 1 BY 1 UNTIL counter > 8
EXECUTE move_exec
FD file_name_var RECORD IS 4 BYTES
OPEN file_name_var FOR WRITING
PERFORM VARYING field 1 FROM 1 BY 1 UNTIL field_1 > 10
IF field_1>5
MOVE "CD" TO field_2
END IF
WRITE file_record TO file_name_var
END PERFORM
CLOSE file_name_var
END PERFORM.
GOBACK.

Pagell0 CobolScripfDevel oper é6s Gui de

Chapter

CS Professional ECodeBr ows
AppMalkem€Control Panel

comes with several features not present in the Standard Edition that combine to make CS

Professional a complete, enterpaady development solution. Using these additional features,

you can cede royaltjree, stan@dlone executables from your CobolScript programs, browse
your code using a colorizing utility, and administer your CobolScript environment.

I n addition to LinkMaker(discusskin appendixes G and H), CobolScript Professional Edition

Feature Requirements

CodeBrowsérand the CobolScript Control Panel both require that you have web server software
installed on your CS Professigaaident computer, and that the CobolScript engine be placed in
your we b-bisdrectere rAgpMakecgnibe run without a web\aat using a specific
command line option, or with a web server by using the Control Panel.

Additionally, the Control Panel can only be run from the machine on which CobolScript Professional
and your web server are installed. This is done for se@oitg.rea

Using CodeBrowser

CodeBrowséris a code colorizing and viewing utility. CodeBfodisptays a colorized version of
your program in a browser window, with a line number besitleesatbode to assist you with the
debugging process. Comments, keywords, and literals are each distinctly colorized in the browser.

CobolScripfDevel oper é6s Gui de Pagelll

CobolScript CodeBrowser - dep.cbl - Netscape

File Edit Yiew Go Communicator Help

« » A4 4 < & O @
Back Fonward Reload Home Search Metscape Print Security Shop it
wtv Bookmarks \& Location:Ihttp:.-".-"12?.D.D.1.-"c:gi-bin.-"c:obolscnpt.exe?-hlisting+dep.cbl j @'W’hat's Related

v &InstantMessage wiehail Radio Peoplz “ellow Pages Download Calendar L‘i Chaninels

CobolScript CodeBrowser, - dep.chl

00000% 01 ws-working-variables. ﬂ
000005 05 ws-dep-amt pic §§§§4.99.

goooog 05 ws-zcounter pic 99 value 0.

0ooo10 05 ws-remaining-asset-value pic §§3835%.99.

oooo11 05 ws-asmount-depreciated pic §§§§4§4§.99.

goooiz 05 period pic 99,

000013 05 ws-content-length pic 9{05).

ooooi4*

000015 01 ws-web-page-header.
ooooia copy “dephdr.cpy”.

Qooool 05 FILLER PIC Zi(n) wvalue “Content-type: text/html®.

ooooaonz 05 FILLER PIC X(n) wvalue LINEFEED.

000003 05 FILLER PIC Ein) wvalue C<HTMLZ<BODY: " .

Qoooo4 05 FILLEERE PIC Xin) walue “coenterr<b:Depreciation Schedule Example</cen
ooooas 05 FILLER PIC X(n) wvalue “<hrxt .

oooooa 05 FILLEER PIC X(n) wvalue ‘Depreciation is a noncash expense that reduces ta
Qoooo? 05 FILLEERE PIC Xin) walue “thereby reducing taxes. Depreciation does not re
Qoooos 05 FILLEERE PIC Xin) walue *Many times this is referred to as a depreciation
goooos 05 FILLEERE PIC X(n) wvalue ‘are "shielded™ from taxes to the extent of the de
Qoooio 05 FILLEERE PIC Xin) walue “CobolScript has built in functions that <ix<braut
oooo1l 05 FILLEERE PIC Xin) walue ‘for you</i>. These functions can be used to
goooiz 05 FILLER PIC X(n) walue “the depreciation using the Double Declining Balan
oooo13 05 FILLEERE PIC Xin) walue “Ztraight Line deprecation methods. You simply ca
Qooo14 05 FILLEERE PIC Xin) walue ‘cost of the asset, life of the asset, period, and
gooois 05 FILLER PIC E(n) walue ‘Click here to Zee the <a href="http://www.cobolse
ooooia 05 FILLER PIC X(n) wvalue *<FORM ACTION="/cgi-bin/cobolscript.exe?dep.chl™ M,
q | o
| (== |Dacurment: Done

Figure 9.8 Using CodeBrowser to browse a program that contains a copybook.

Copybooks that are included in ywagram appear as inline code in the CodeB’Fquﬁeg; they

are differentiated with a gray background. Including copybook code in the CofldBtimgser

helps to provide a cohesive view of your entire program, and more meaningful code printouts and
documentation.

The .csaccess File

In order for you to use CodeBrovsex file namedsaccess st exi st i n-bigour we
directory. CodeBrowSegprogram listings may only bewad for those CobolScript programs that

have an entry in thesacciles The contents of this file are the names (and relative paths, if any) of
the programs that you wish to be made available for browsing, with a linefeed separating each
program nameHowever, rather than creating and editing this file directly, you can use the Control
Panel to administarsacceSge the section on the Control Panel later in this appendix for more
information.

Anyone with access to your web site will be alant@obolScript programs that have been added

to the.csaccfiies This feature is useful for programming teams in different locations that are sharing
development and test servers; these teams only have to enter the appropriate URL in their web
browsetto see a CobolScript program that resides on the server (see URL section below).

Pagell2 CobolScripfDevel oper é6s Gui de

Before going live with an application, you should directly ecietelissand remove any entries
for programs that you do not wish be made publicly visible with CodéBrdesetan also simply
delete the contents of the file, which will prevent browse access on all programs. Anyone attemptin

3 Netscape

File Edit Wiew Go Communicator Help

& 2 3 & B @
Back Forward — Reload Home Search Melscape Print Security Shop Siog
M w!'Eookmarks !‘ Lo:at\on:lhttp:.r‘f'lZ? 0.0.7/zgi-bin/cobolzcript. exe ?-hlisting+dep. chbl j @'What's Related

il ﬁlnstantMessage Y/ ebb il Radio Feople “ellow Pages Download Calendar D‘ Char

Browse Access not allowed.

=& FE= |Document: Done £l 2 oz

Figue9®3CodeBr owser O0OBrowse Access not al

to browse a program lowdge nfcoveadd ret palelsewd
Figure 9.2.

Running CodeBrowsef from a URL

Once thecsaccfisshas been configured, just enter the following URL (modified for your
environment and program name) in your web browser to examine a program using CodeBrowser

http://<server - name>/cgi - bin/cobolscript.exe? - hlisting+<program - hame>

Here serveramegfers to the host name or IP address of your CobolScript/web server machine, and
programmameefers to the full name and relative path, if required, of your CobolScript program. In the
following example, CodeBrowser will bring up a listing for the paogpdéermail.clan the server
www.cobolscripsedong asail.clid a valid entry ilesaccess

http://mww.cobolscript.com/cgi - bin/cobolscript.exe? - hlisting+mail.cbl

Of course, you can also link to this form of URL from other web pages or fronodipiLof
CobolScript programs. An HTML link for the program above could look like the following:

<A HREF=0http:// www. cob elinkabalscriptexex o m/-c g i
hlisting+mail.cblo>View Mail Program</ A>

CodeBrowsércan also be run from the CobolScript @bftanel. See the section on the Control
Panel later in this appendix for more information.

CobolScripfDevel oper é6s Gui de Pagell3

Building ExecutablesS with AppMaker

CS Professional provides the capability to creatalstaaexedables from CobolScript programs

using AppMakér This gives you the opportunity to sell or redistribute your CobolScript

applications without disclosing your code, and without requiring that your customers purchase their
own CobolScript license from Daske (as is the case with CobolScript Standard Edition). You

might also choose to build executables for an internet system, and then place those executables on
your production web server, rather than placing raw code files on a production machine.

Executales can be built directly from the command line with the following syntax:

cobolscript.exe - b <program - name>

If your program successfully loads, an executable will be created from it and placed in the working
directory. For example, typing the followiiigcreate an executable natestiexe the working
directory:

cobolscript.exe - b test.chl

You can also build executable files by typing a specific URL into your web browser. This URL has
the following format.

http://<server - name>/cgi - bin/cobolscript.exe? - b+<program - name>

Here servelameefers to the host name or IP address of your CobolScript/web server machine, and
programmameefers to the full name (and relative path, if required) of your CobolSgrgrhprim
the following example, an executable will be creatattdarbh the servet27.0.0:1

http://127.0.0.1/cgi - bin/cobolscript.exe? - b+write.cbl

After the executable has been built, you will a web page similar to Figure 9.3. You can run the
executable by clicking on the hyperlink that appears on the page.

?{gj\aﬁ@dﬁ@;&?ﬁ%

Back Farward Reload }—Tome Search Metscape Print Security Shop Stap
wf " Bookmarks i Location:[htp://127.0.0.1/cgi-bindeobolscript. xe ?-vurite. cbl | @117 what's Related

i ﬁlnslanlMsssagE wiabhd ail Radio People ellow Pages Download Calendar LI" Char

Successfully built executable
write.exe

[=B=] |Document: Done

Figure 9.3 Buildingpan AppMaker executable from a v

Pagell4 CobolScripfDevel oper é6s Gui de

http://127.0.0.1/cgi-bin/cobolscript.exe?-b+write.cbl

AppMaker can also be run from the Coboj&dBiontrol Panel. See the section on the Control
Panel later in this appendix for more information.

Using the Cobol Script Control Panel

The CobolScript Control Panel is dmiistrative utility that is available only in CS Professional.

The Control Panel provides access to other features of CS Professional, giving you the ability to run
your CobolScript programs, browse your code, and build executables, all fromswéhin a vi
environment.

In order for the Control Panel to work correctly, you must have web server software installed on youl
CS Professional computer, and the Camol Scri
directory. Also, for security reastimesControl Panel may only be started from the machine on

which CS Professional is installed.

To access the Control Panel, start a web browser and type in the following URL:

http://<server - name>/cgi - bin/cobolscript.exe

Here serveramesfers to the st name or IP address of your CobolScript/web server machine.

Most computers are configured with 6| oopbackd value to refer t
address is often 127.0.0.1, the following URL will start the Control Panel on most web server
machines with CobolScript installed in thbioglirectory:

http://127.0.0.1/cgi - bin/cobolscript.exe

CobolScript Control Panel - Netscape

All files acoessed fram the Control Panel must be
located in your web servers egi-bin directory or one
c l] Is - of itz subdirectaries Vourweh sencer's cai-bin
directory must be named 'cgi-bin' or 'CG-BIN' for files
n o cr“lt® Contro' Panel insubdirectories to be found. Vour CobolScript
engine must be named 'cobolscript.exe’ and be in
the zame directory as your programs.

Run a CobolScripts Program

Run | Browse... |
View a Program in the CodeBrowser.,

Show Me | |exec chl] Browse... |
Build an Executable with AppMaker.,

Build I Browse... |

Administer File-level CodeBrowser., Privileges for Public Users

o

Figure 9.4 CobolScript Control Panel.

Once youdve submit t eldolSctriht €onteolPpnel wipappearinaneW RL
window (see Figure 9.4). The following subsections explain Control Panel functionality.

CobolScripfDevel oper é6s Gui de Pagell5

http://127.0.0.1/cgi-bin/cobolscript.exe

Running a CobolScript program from the Control Panel

To run a CobolScript program from the Control Panel, enter thefrthmerogram in the input

box next to th&®unbutton, or select the program by clicking oBtboe/daitton to browse your
filesystem. Onc e Yy o Ridnw execstethegrograendThia willpaliow ypu a m
to run any CobolScriptporg r am t hat i s ibindirgciory and thatiddesggmedto e r 0 ¢
run through a web server (e.g., it displays correct MIME header information and HTML output).

Accessing CodeBrowsér from the Control Panel

To run CodeBrowseifrom the Control Panel, enter the name of the program in the input box next

to theShow Mautton, or select the program by clicking oBtbe/d®itton to browse your
filesystem. Onc e vy o Gliow Klerhss avill iy tuppachewawingow thag r a m
contains a CodeBrowsdisting of your program. Note that the program name must be in the
.csaccessfor browsing to be peitted; see below for instructions on administering this file through

the Control Panel.

Administering File-level CodeBrowsér Privileges

CodeBrowsérprogram listings may only iewed for those CobolScript programs that have an

entry in thecsacciies You can add these entriessaccleg<licking on th&obutton from the
Control Panel, which will open a new window
(see Figure 9.5).

4-‘;; Administer Public CodeBrowser File Access - Netscape

Files currently open to public CodeBrowsing:

+ exec.chl

* catalog2.chl
* purchase.chl
* dep.chl

* regaccpt.chl
* sql.chl

* mysgl.chl

= write.ckl

* sgl.chl

AddFile | | Browse... |

Figure 9.5 Administering CodeBrowser privileges.

In this new window, you can add program filesémceg®ntering the name of the file in the input
box or by selecting the program by clicking dBrthedmitton, and then clicking on thdd File
button. Af t eing filgspsimplywckse the windewvh e d add

To remove public browsing capabilities on a program, you must directlycsditdiiesand
manually remove the entry for the program you want to restrict. You can also .dstetefite
which will preveat browse access on all programs.

Pagell6 CobolScripfDevel oper é6s Gui de

Using AppMakerE from the Control Panel

To use AppMakErto build an executable frahe Control Panel, enter the name of the program in

the input box next to tHuildoutton, or select the program by clicking oBtbevsmitton to

browse your filesystem. Builct Aepopupwindow il s e | ect
appear thashows that the executable was successfully built. Provided your application is designed f
the web, you can then run the executable from the popup by clicking on the hyperlink. See Figure
9.6.

CobolScript Control Panel - Hetscape

All files accessed from the Control Panel must be
lozated in yourweb senrers cgi-bin directons or one
c I] Is - of it subdirectories. Wourweb senrers cgi-bin
directony must be named 'egi-bin' or'CG-BIN' for files
o o crlllt® Contro' Panel in subdirectories to be found. Your CobolSeript
ngine must be named 'cobolzcript.exe’ and be in
rhe same directony as your programs.

H# Netscape

AL Successfully built executable

Run exec.exe rowse... |
View

Show Me | | Browse... |
Build an Executable with AppMaker-,

Build | |exec.ch| Browse... |

Administer File-level CodeBrowser., Privileges for Public Users

ol

Figure 9.8 Creating an executable with AppMaker from the Control Panel.

CobolScripfDevel oper é6s Gui de Pagell7

Appendix

Language Reference

more information on specific components of CobolScript programs other than commands,

T his appendix gives a detailed description of the command syntax used by CobolScript. For

1
+

ICON KEY

File 110
Email

such as variables, literals, and esxpnss see ChaptelCbolScript Language Constructs

Usage for most of the commands listed in this appendis demonstrated in one of gample
programs included with CobolScript. The sample programs are available for download from the
Deskware Registel Developer Home Pagjpist login at
www.cobolscript.com/cobolscript.exe?loginsiblg your Registered Developer ID and download
the sampl@rogramsonly file. A complete listing of thesample programs appears in Appendix D,
Sample CobolScript Program Files

Syntard Description of Commands

Below is a legend that describes how the commands are documented.

Command: Command name

Syntax Example syntax for a command.
Variables and literals are enclosed in greater than/less than signs, €v@griable>
Optional syntax is enclosed in brackets, e[ROUNDED]

Description: Detailed description of what the command does

Example Usage: Example illustrating the actual use of the command

See Also: Other commands that are related to this command

Sample Program: Filename of sample program that demonstrates the use of this command.

Figure A.B The format of the commanefference.

Pagell8 CobolScripfDevel oper é6s Gui de

https://www.cobolscript.com/cobol.exe?login.cbl

ACCEPT

Command:

ACCEPT

Syntax:

Variant 1:

ACCEPT<accepivariable> FROM DATE.
ACCEPT<accepivariable> FROM DAY.
ACCEPT<acceptvariable> FROM DAYOFRWEEK.
ACCEPT<accepivariable> FROM TIME.

Variant 2:
ACCEPT<accepivariable> FROM KEYBOARD [PROMPT <promystring>].

Variant 3:
ACCEPT DATA FROM WEBPAGE.

Description:

The ACCEPT command has three variants:

Variant 1:

The basic variant of ACCEPT can be used to populate a nuateeptvariable with
one of a number of variations of the current system date/time. The formats of the {
returned taacceptvariableby each of the date/time keywords are as follows:

Keyword Format Mask
DATE DDMMYYYY , whereDD is the day of the month, ranging from 0

to 31,MM is the month of the year, ranging from 01 to 12, ¥N&'Y
is the bur-digit year.

DAY YYDDD, whereYYis a twadigit year code, an®DD is a day of the
year ranging from 001 to 366.

DAY -OF-WEEK d, whered =0 means Sundagl,= 1 means Monday, etc.

TIME hhmmss wherehh corresponds to hour of the day and ranges fro|
00 to 23, mmcorresponds to minutes past the hour and ranges fr(
00 to 59, andscorresponds to secongast the minute and ranges
from 00 to 59.

Variant 2:

ACCEPT <accepvariable> FROM KEYBOARD can be used to read a line from the
standard input stream (normally the KEYBOARD) and store it in an alphanumeric
acceptvariable

When an ACCEPT FROM KEYBOARD command is processed, programiglow
suspended until a line of keyboard input has been received. If the PROMPT claus
specified promptstring will display to standard output prior to the cursoompt.
Program execution is resumed when a line of standard input is terminated with a li|
character; however, the linefeed character is not includadceptvariable If the
standard input stream is greater than the lengétcdptvariable thedata will be right
truncated.

This variation of the ACCEPT command is also useful for getting raw, unparsed C(
(Common Gateway Interface) data from web pages. This is necessary for retrievir
from GET-method CGI form submissions, or for examinthg raw input stream from
POSTFmethod submissions. Normally, however, ACCEPT DATA FROM WEBPAG
should be used for POSTethod data retrieval see below for more information.

Variant 3:

The ACCEPT DATA FROM WEBPAGE statement will accept CGI data from an
HTML form that was submitted using the POST method, parse it, and place the co
in corresponding CobolScript variables. For this statement to work successfully, u;
same field names in the receiving CobolScppagram as are in the submittin@BT-
method CGI form. The ACCEPT DATA FROM WEBPAGE statement will then
populate these CobolScript variables with the values that are in the incominughilesl
CGl variables; no additional parsing logic is required.

CobolScripfDevel oper é6s Gui de Pagell9

Command:

ACCEPT

Refer to Chapters 6 and 8 for a maralepth discussion of ACCEPT DATA FROM
WEBPAGE.

Example Usage:

Variant 1:

ACCEPT date FROM DATE.

ACCEPT day FROM DAY.

ACCEPT day_of week FROM DAY - OF WEEK.
ACCEPT time FROM TIME.

Variant 2:
ACCEPT stdin_var FROM KEYBOARD PROMPT “Enter input: .
ACCEPT raw_buffer FROM KEYBOARD.

Variant 3 (assumes two incoming CGl variables namedust_nmand order_nby:
1 cust_nm PIC X(50).
1 order_nbr PIC 9(10).

ACCEPT DATA FROM WEBPAGE.

Sample Program:

ACCEPT.CBL

ACCEPTFROMSOCKET

Command: ACCEPTFROMSOCKET
Syntax: ACCEPTFROMSOCKET USING <sockeumber> <acceggockethumber>.
Description: ACCEPTFROMSOCKET creates a new TCP/IP socket connectiacaeptsocket

numbermwhen a remote machine attempts to connect using a particular socket
number Sockeinumberrefers to the socket that has already been created in order
listen for a connection; when a remote computer attempts to connect on that socke
ACCEPTFROMSOCKET command will accept the connection and create a newly
connected socket atceptsocketnumber

The ACCEPTFROMSOCKET command will cause CobolScript to suspend progral
flow until a socket connection is successfully established with a remotgutem

After the new socket connection has been establislbe##tetnumberis freed and is
ready to listen for another connection.

This command is conventionally used only on the machine that is considered to be
server in tweway socketonnections.

The TCP/IP return code and return message variables are populated with standarc
TCP/IP return codes and messages after execution of this command. They can bg
examined after command execution for effrapping purposes.

See the Using TCP/IBommands section of ChapterNgtwork and Internet
Programming Using CobolScriptor more information on using socket commands.

Example Usage:

ACCEPTFROMSOCKET USING socket_num_var
connctd_socket_num_var.

The ACCEPTFROMSOCKETammand requires that the following TCP/IP variable
declarations be included in your program:

1 TCPIP - RETURNCODES.
5 TCPIP - RETURNCODE PIC 9(07).
5 TCPIP - RETURNMESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in yourgraom with a COPY or
INCLUDE statement. This copybook includes these variable definitions.

Pagel20

CobolScripfDevel oper é6s Gui de

Command: ACCEPTFROMSOCKET

See Also: BINDSOCKET LISTENTOSOCKET
CLOSESOCKET RECEIVESOCKET
CONNECTTOSOCKET SENDSOCKET
CREATESOCKET SHUTDOWNSOCKET

Sample Program: SERV.CBL

Command: ADD

Syntax: Variant 1:
ADD <number or Vv avaiabldr[ROUNDED] TO <t ar get
Variant 2:
ADD <number or variabl e> ¢ <tdrgetvariabla>mb e r
[ROUNDED]

Description: Variant 1 of the ADD statement is used to add one or more numeric literals and/or

numeric variables together, storing the result in the nurtemgetvariable All literals
and variables are added together to produce the result, including the viatgebf
variableprior to the addition.

Variant 2 of ADD is used to add one or more numeric literals and/or variables toge|
with the result stored intarge-variablewhose original contents are not considered i
the addition. Thus, if var has an initial value of 1, performing the operation:

ADD 1 TO 1 GIVING var.
will place a value of 2, not 3, into var.

Both forms of ADD permit the use of tiROUNDED keyword, which rounds the targe
variable, after computation, to the nearest integer.

Example Usage:

Variant 1:

ADD 1 TO num_variable.

ADD 1 2 3 TO num_variable.

ADD var TO total.

ADD 1.11 2 var TO total ROUNDED.

Variant 2:
ADD value TO subtotal GIVING total.
ADD 9.99 value TO subtotal GIVING total ROUNDED
See Also: COMPUTE
SUBTRACT
MULTIPLY
DIVIDE
Sample Program: ADD.CBL
BANNER
Command: BANNER
Syntax: BANNER USING <banneiinput> <bannercharactefinput>
Description: The BANNERcommand displays a Unistyle banner to the screen. The contents of

bannerinputare the large characters of the banner; the contebtnokercharacter
inputare thecomponent characters of the banner, which are the small characters u:
make the banner letters. bdnnercharacterinputis equal to a single space ("~ or the
SPACE keyword), the component character of each large letter will be a smaller ve
of itself, e.g.,

BANNERUSING "TEST SPACE

CobolScripfDevel oper é6s Gui de Pagel21

Command:

BANNER

will generate the following screen output:

TTTTTTT EEEEEEE SSSSS TTTTTTT
T E S ST
T E S T
T EEEEE SSSSS T
T E S T
T E S ST
T EEEEEEE SSSSS T

Example Usage:

BANNERUSING "TEST™ '#.
BANNERUSING "TEST™ " .
BANNER USING "TEST® SPACE.

BANNERUSING banner_contents banner_char.

See Also:

GETBANNER

Sample Program:

BANNER.CBL

Bl NDSOCKET

Command: BINDSOCKET
Syntax: BINDSOCKETUSING <sockeinumber> <pornumber>.
Description: The BINDSOCKETcommand binds a socksbckethumberto a specific TCP/IP port

port-numberon the leal machine. After this command is executed , the operating
system will associatgort-numberwith sockethumber

This command is conventionally used only on the machine that is considered to be
server in tweway socket connections.

The TCP/IPreturn code and return message variables are populated with standard
TCP/IP return codes and messages after execution of this command. They can bg
examined after command execution for effrapping purposes.

See the Using TCP/IP Commands section of Chaptdetyork and Internet
Programming Using CobolScriptor more information on using socket commands.

Example Usage:

BINDSOCKETUSING socket_num _var port_num_var.

The BINDSOCKET command requires that the following TCP/IP variable declarati
be included in your program:

1 TCPIP - RETURNCODES.
5 TCPIP - RETURNCODE PIC 9(07).
5 TCPIP - RETURNMESSAGE PIC X(255).

Alternatively, includetie sample file TCPIP.CPY in your program with a COPY or
INCLUDE statement. This copybook includes these variable definitions.

See Also: ACCEPTFROMSOCKET LISTENTOSOCKET
CLOSESOCKET RECEIVESOCKET
CONNECTTOSOCKET SENDSOCKET
CREATESOCKET SHUTDOWNSOCKET

Sample Program: SERV.CBL

Pagel22

CobolScripfDevel oper é6s Gui de

CALENDAR

Command: CALENDAR
Syntax: CALENDAR USING <yearinput> <monthinput>.
Description: The CALENDARcommand displays a calendar for a given ye@rinputand month

monthinput Theyearinputandmonthinputshould be numeric values; if they are
variables, their variable declarations must have numeric picture clauses. Any fract
component tyearinputor monthinputwill be ignored, e.g., gearinputof 1957.75
will be processed as 1957.

CALENDAR does not support pidulian calendar dates, i.e., any date prior to Augus
1752.

Example Usage:

CALENDARUSING 2001 1.

CALENDARUSING year_var month_var.

See Also:

GETCALENDAR

Sample Program:

CALENDAR.CBL

CALL

Command: CALL
Syntax: CALL <systemracommandliteral | variable> <systeroommand i t er a | | Vv
Description: CALL is used to call a shell command. Essentiafgterrcommanditeral or the

contents of ariablear e executed at t he o mg.rMuliglen
arguments may be specified for a CALL command, and group items may be used |
CALL arguments.

CALL is an extremely powerful and versatile command, so use caution when
implementing a program that uses CALL, especially when that program receives d
from web input or other wunauthorized
CALL on any useinput value that has not first been validated or examined by your
program, since CALL provides access to operating system commands.

Example Usage:

Example with one literal argument:
CALL “dir *.txt".

Example with one variable argument:
MOVE ’Is *.tmp" TO system_command.
CALL system_command.

Example with one literal and one variable argument:
MOVE “*.cbl® TO wildcard_variable.
CALL ‘Is 71" wildcard_variable.

Example with gldi variable argument:
1 system_command.

5°7s.
57 *tmp’.
CALL system_command.
Sample Program: CALL.CBL
Command: CLOSE
Syntax: CLOSE <filename>.
Description: The CLOSE command is used to close a text datéiléleamethat was previously

opened with the OPEN statement.

CobolScripfDevel oper é6s Gui de

Pagel23

Command:

CLOSE

Example Usage:

CLOSE "TEST.DAT".

CLOSE test _file.

See Also: FD
OPEN
POSITION
READ
REWRITE
WRITE

Sample Program: 10.CBL

CLOSEDB

Command: CLOSEDB (CobolScript Professional Edition On)y

Syntax: CLOSEDB USING <returrtodevariable>.

Description: The CLOSEDB command cl oses an open Li
populateseturn-codevariablewith an integer value of 1 (success) or O (failure). Thi
command is used after a connection has been established with a data source usin
OPENDB command.
See Appendixes G and H for more information about configuring and using
LinkMaker E.

ExampleUsage: CLOSEDB USING ret_code.

See Also: OPENDB, EXEC SQL

Sample Program:

SQL.CBL

CLOSESOCKET

Command: CLOSESOCKET
Syntax: CLOSESOCKETUSING <sockenumber>
Description: The CLOSESOCKETommand closes the specified TCP/IP socket connesticket

number It should only be called after the SHUTDOWNSOCKE&Immand has been
issued, to ensure a graceful socket termination.

The TCP/IP return code and return message varial#gsopulated with standard
TCP/IP return codes and messages after execution of this command. They can bg
examined after command execution for effrapping purposes.

See the Using TCP/IP Commands section of Chaptdetyork and Internet
Programming Umg CobolScriptfor more information on using socket commands.

Example Usage:

CLOSESOCKETUSING socket_num_var.

The CLOSESOCKET command requires that the following TCP/IP varitdalarations
be included in your program:

1 TCPIP - RETURNCODES.
5 TCPIP - RETURNCODE PIC 9(07).
5 TCPIP - RETURNMESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program with a COPY or
INCLUDE statement. This copybk includes these variable definitions.

See Also: ACCEPTFROMSOCKET LISTENTOSOCKET
BINDSOCKET RECEIVESOCKET
CONNECTTOSOCKET SENDSOCKET
CREATESOCKET SHUTDOWNSOCKET

Sample Program: SERV.CBL

Pagel24

CobolScripfDevel oper é6s Gui de

COMPUTE

Command: COMPUTE
Syntax: COMPUTE<computevariable> [ROUNDED}E <expression>.
Description: The COMPUTEstatement is used to evaluate a normal mathematipaéssionand

place the result isomputevariable Refer to the Expressions and Conditions sectior
Chapter 3CobolScript Language Constructsr details on the various forntisat
expressions are permitted to take.

COMPUTEalso supports the use of functions; see AppeBdFunction Referencdor
complete details on the functions supported.

The use of alphanumeric variables or string literals in a COMP&#diEment is illegal.
Also, only one variable can be acted upon at a time in a CobolS@MPUTE
statement. This means that multiple assignment statements must be used to assig
multiple variables.

To identify size errors (encountered when a COMPUTE result is larger than the tar]
variablebs picture c¢l| aus esuppiea corditios,)sincé i
size errors do not cause direct program errors. For instance, the following three
statements will place a value of 11 in num_variable without causing a direct progra
error:

1 num_var PIC 99 VALUE 0.
1increment_v ar PIC 999 VALUE 111.

COMPUTE num_var = num_var + increment_var.

This type of overflow can be trapped by first checking the expression with a conditi
statement, as in the following:

IF (num_var + increment_var) >= 100

DISPLAY "Limit bypassed®
ELSE

COMPUTE num_var = num_var + increment_var
END IF.

Example Usage: COMPUTEvar = var + 5.

COMPUTHEdepreciation =
DDBAM(cost, life, period, salvage - value).

COMPUTHlelta = (((x+y)/2)%3)"1.86 T SQRTX).
See Also: ADD

SUBTRACT

MULTIPLY

DIVIDE

Sample Program: COMPUTECBL

CONNECTTOSOCKET

Command: CONNECTTOSOCKET
Syntax: CONNECTTOSOCKETUSING <sockenumber> <ipaddress> <pomumber>.
Description: The CONNECTTOSOCKETommand attempts to establish a remote TCP/IP

connection with the machine igtaddresausing a socketocketnumberand a porport-
number Ip-addresscan be a raw IP address or any valid host name on the network
internet that will accept the communication.

CobolScripfDevel oper é6s Gui de Pagel25

Command:

CONNECTTOSOCKET

This command is conventionally used only on the machine that is eoagditb be the
client in twoway socket connections. It requires that the remote machine accept t
connection with ACCEPTFROMSOCKET or an equivalent command.

The TCP/IP return code and return message variables are populated with standarc
TCP/IP return odes and messages after execution of this command. They can be
examined after command execution for effrapping purposes.

See the Using TCP/IP Commands section of Chaptdetyork and Internet
Programming Using CobolScriptor more information omising socket commands.

Example Usage:

CONNECTTOSOCKBITSING socket_num_var
host_name_var
port_num_var.

The CONNECTTOSOCKET commamdquires that the following TCP/IP variable
declarations be included in your program:

1 TCPIP - RETURNCODES.
5 TCPIP - RETURNCODE PIC 9(07).
5 TCPIP - RETURNMESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your progratt\&iCOPY or
INCLUDE statement. This copybook includes these variable definitions.

See Also: ACCEPTFROMSOCKET LISTENTOSOCKET
BINDSOCKET RECEIVESOCKET
CLOSESOCKET SENDSOCKET
CREATESOCKET SHUTDOWNSOCKET
Sample Program: SERV.CBL

CONTI

NUE

Command: CONTINUE
Syntax: CONTINUE.
Description: The CONTINUEs t at ement c ann obteh iunsgedd satsa tae ndedn|

or anywhere else in a program. It is treated as a normal line of code, but does not
any consequences and passes control to the next statement. Use it when you wis
structurea condition as IF .. ELSE, but there is no logic to be executed for the IF ca
only for the ELSE case. See the Example Usage.

Example Usage: IF variablel =5
CONTINUE
ELSE
DISPLAY ‘variablel is not equal to 5°
END IF
SampleProgram: NEXT.CBL
Command: COPY
Syntax: COPY <copybookliteral>.
Description: COPY loads the file named by the literal vale@pybookiteral into a CobolScript

program. The code that is in the copybook file is loaded and executed as if it were
of the loading program, exactly in the position of the COPY s&tém

In CobolScript, there is no material difference between INCLAD& COPY.

Example Usage:

COPY 'COPYBOOK.CPY".

Pagel26

CobolScripfDevel oper é6s Gui de

Command: COPY

COPY “copybook.cpy'.
See Also: INCLUDE
Sample Program: COPY.CBL

CREATESOCKET

Command: CREATESOCKET
Syntax: CREATESOCKETUSING <sockennumber>.
Description: The CREATESOCKETommand creates a socket descriptor, or virtual circuit, on a

TCP/IP sockesocketnumber Once created, this socket descriptor can then be use
with other CobolScriptocket commands.

The TCP/IP return code and return message variables are populdtethwdard
TCP/IP return codes and messages after execution of this command. They can bg
examined after command execution for effrapping purposes.

See the Using TCP/IP Commands section of Chapfdetiyork and Internet
Programming Using CobolScripfor more information on using socket commands.
Example Usage: CREATESOCKETUSING socket_num_var.

The CREATESOCKET command requires that the following TCP/IP variable
declarations b&cluded in your program:

1 TCPIP - RETURNCODES.
5 TCPIP - RETURNCODE PIC 9(07).
5 TCPIP - RETURNMESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program with a COPY or
INCLUDE statement. This copybook includes theariable definitions.

See Also: ACCEPTFROMSOCKET LISTENTOSOCKET
BINDSOCKET RECEIVESOCKET
CLOSESOCKET SENDSOCKET
CONNECTTOSOCKET SHUTDOWNSOCKET

Sample Program: SERV.CBL

CREATESHMPOOL

Command: CREATESHMPOOL

Syntax: CREATESHMPOOL <share memory id>

Description: The CREATESHMPOOL command create a share memory pool and returns a har
that uniquely identifies that storage.

Example Usage: CREATESHMPOOL WSHM ID

See Also: PUTSHMPOOL, GETSHMPOOL, DETACHSHMPOOL

Sample Program: SHM1.CBL, SHM2.CBL

DELETEMAI L

Command: DELETEMAIL

Syntax: DELETEMAIL USING <email address> <email password> <email number> <pop3
server>

Description: The DELETEMAIL command will remove an email from an email server. The accq
and password must be supplied as wethasnumber of the email to remove.

Example Usage: DELETEMAIL USING WS EMAIL WS- PASS WS EMAIL- NUM WSPOP3

CobolScripfDevel oper é6s Gui de Pagel27

Command:

DELETEMAIL

See Also:

SENDMAIL, GETMAIL

Sample Program:

SIZE.CBL

DETACHSHMPOOL

Command: DETACHSHMPOOL
Syntax: DETACHSHMPOOL <shared memory pool id>
Description: The DETACHSHMPOOL command terminates your usage of a share memory poc

This should be done when you are finished with it.

Example Usage:

DETACHSHMPOOL WSHM ID

See Also:

CREATESHMPOOL, PUTSHMPOOL, GETSHMPOOL

Sample Program:

SHM1.CBL,SHM2.CBL

DI SPLAY

Command: DISPLAY

Syntax: DISPLAY <l i teral 1> & <litere
<variable1> <variable2>
<expressionl> <expression2>

Description: The DISPLAY statement is used to displitgrals, variables, and expressions to the

standard output device (normally the screen in comnatiardnode, and & web
browser when using CobolScript with a web server). Because CobolScript allows
expressions inside DISPLAY statements, individual arguments to DISPLAY must K
clearly separated using the ampersand (&).

Displaying group items is permitted. Using godtems as DISPLAWariables is
especially useful when constructing web pages, both for code clarity and reusabilit
purposes (group items can be stored in separate copybooks and used by multiple
programs using the COPY and INCLUDE statetagn

Use of positional string referenciamd the use of expressions as arguments in positi
string referencing are both permitted in DISPLAMtements. See the Example Usag
below.

When directlydisplaying expressions, five significant digits will usually follow the
deci mal point i f t hienteexgperre.s silofn 6tsh ev ael
extremely large, however (>1,000,000,000), some precision may be lost in the frac
portion d the value. CobolScript has an absolute limit of 16 digits of precision, and
not correctly display or perform computations on any humber, expression or variah
with more than 16 total digits.

Displaying numeric variables is preferred to displgyéxpressions when format masks
are relevant, or when a value has more than five decimal places; this is because vi
will be displayed according to their defined picture clause format. Numeric variable
however, are limited to ten total digits afgision for values less than 100,000,000,
slightly more digits of precision for values equal to or higher than 100,000,000, wit}
absolute maximum of 16 digits of precision. To use a variable in place of an expre
simply define a variable and assig to the expression of interest using a COMPUTE
statement; then DISPLAYhe variable in place of the expression.

The CobolScript string delimiter is the ™ (the accent key, usually located in the uppy
corner of American keyboardselow theEsc key). String literals must be enclosed b
" in order for them to display properly. Alternatively, the string delimiter can be che
for a particular program run by setting the appropriate command line option. Refel
the section Runnin@obolScript from the Command Line, in ChapteG2tting Started
with CobolScriptto learn more about command line options.

Pagel28

CobolScripfDevel oper é6s Gui de

Command:

DISPLAY

Example Usage:

DISPLAY with multiple arguments:
DISPLAY varl &
var2 & var3.

Expression example:
DISPLAY output + 5.

Postional string referencing example (with expression as argument):
DISPLAY "Hour: * & time(start_pos:start_pos+1).

Group level data item example:
1 group_level.

5 This is".

5 atest..

DISPLAY group_level.

SeeAlso:

DISPLAYLF, DISPLAYFILE

Sample Program:

DISPLAY.CBL

DI SPLAYASCI | FI

L E

Command: DISPLAYASCIIFILE
Syntax: DISPLAYASCIIFILE <filename>
Description: The DISPLAYASCIIFILE command will display the contents of the specified ASCII

filenameto the standard output device.

DISPLAYASCIIFILE is useful for displaying individual files that contain raw HTML 1
the calling browser window, so long as the rappiate MIME header information is firs
displayed; this can be useful if you wish to clearly separate program logic from HT]
without going through the effort of placing the HTML into group item variables. Sej
Creating Virtual HTML section of Chapt®, Building WebBased Systemfor
information on displaying MIME headers.

DISPLAYASCIIFILE can also be used within a CobolScript program to transfer an
ASCII file to a remote user. This is useful for usgtiated downloads through CGI
form submissias on a web site that requires user verification or other logic to execy
prior to the actual file transfer. See Chaptehdvanced Internet Programming
Techniques Using CobolScrifair more information on how to use
DISPLAYASCIIFILE in this manner.

DISPLAYASCIIFILE should only be used to display files that are ASCII text; use
DISPLAYFILE to display binary files.

Example Usage:

DISPLAYASCIIFILE “test.dat’.

DISPLAYASCIIFILE filename_var.

See Also:

DISPLAYFILE, DISPLAY, DISPLAYLF

Sample Program:

DOWN.CBL

DI SPLAYFI

L E

Command: DISPLAYFILE
Syntax: DISPLAYFILE <filename>
Description: The DISPLAYFILE command will display the contents of the specified binary file

filenameto the standard output device.

DISPLAYFILE can be used within a CobolScript program to transfer a binary file (g
as an executable) to a remote user. This is useful foiinisated downloads through

CobolScripfDevel oper é6s Gui de

Pagel29

Command:

DISPLAYFILE

CGl form submissions on a web site that requires user verification or othetdogic
execute prior to the actual file transfer. See Chaptédvanced Internet Programming
Techniques Using CobolScrifair more information on how to use DISPLAYFILE in
this manner.

DISPLAYFILE should only be used to display binary files; use DISPLAYABICE to
display ASCII text files.

Example Usage:

DISPLAYFILE “test.exe’.

DISPLAYFILE filename_var.

See Also:

DISPLAYASCIIFILE, DISPLAY, DISPLAYLF

Sample Program:

DOWN.CBL

DI SPLAYLF

Command: DISPLAYLF

Syntax: DISPLAYLF <l i teral 1> & <liteil
<variable1> <variable2>
<expressionl> <expression2>

Description: DISPLAYLF is the same as DISPLAY, but displays a trailing linefeed character afte

every elementary item argument has been displayed, including those cases where
initial argument is a group item.

Example Usage:

Example with gldi argument:
1 group_level.

5 Thisis".

5 atest. .
DISPLAYLF group_level.

Example with multiple elementary arguments:
1 varl PIC X(N) VALUE ‘Thisis’.

1 var2 PIC X(N) VALUE " a test.".
DISPLAYLF varl &var2 &".

See Also: DISPLAY, DISPLAYFILE

Sample Program: DISPLAY.CBL

Command: DIVIDE

Syntax: Variant 1:
DIVIDE <numberordivisov ar i abl el > & -varibdbEXJRCUNDED] d e n
Variant 2:
DIVIDE <numberordivisev ar i abl el > ¢é | NT Guariabler GIYING
<resultvariable> [ROUNDED] [REMAINDER<remaindeivariable>]
Variant 3:
DIVIDE <number or dividendariable> BY <number or diviserariable> GIVING <resuit
variable> [ROUNDED] [REMAINDER<remaindeivariable>]
If a REMAINDER clause is specified in Variant 2 of the DIVIBEatement, only a
single divisor may be specified. Only one divisor and one dividend may be specifie
Variant 3 of the DIVIDEstatement, regardless of whether the REMAINDER clause |
used.

Description: Variant 1 of the DIVIDE statement is used to divide one or more numbers and/or

numericdivisor-variablesinto a target numeridividendvariable. The result is stored ii

Pagel30

CobolScripfDevel oper é6s Gui de

Command:

DIVIDE

thedividendvariable and its previous value is overwritten. This form of DIVIDE is
equivalent to the COMPUTHRtatement:

COMPUTE dividenévariable =
dividendvariable/divisotvariablel/divisotv ar i abl e 2/ é

Variant 2 of the DIVIDE statement is used to divide one or more numbers and/or
divisor-variablesinto a number odividendvariable and the result is stored in a
separateesultvariable thereby preserving the value in tigidendvariable This
form of DIVIDE is equivalent to the COMPUTE statement:

COMPUTE resuklvariable =
dividendvariable/dvisor-variablel/divisotvv ar i abl e 2/ é

Variant 3 of the DIVIDE statement is used to divide a numbediwidendvariableby a
single number and/ativisor-variable The result is stored in a sepanasut-variable
This form of DIVIDE is equivalent to the COMPUTE statement:

COMPUTE resuhvariable = dividendrariable/divisorvariable.

Variants 2 and 3of DIVIDE permit the usage of the REMAINDBgyword, which

stores the remainder from the division operation in a sepamai@ndervariable The
remainder is the portion of the dividend that would be left over if the result were for
to be an integer value. Using the REMAINDERnerd in a DIVIDE statement is
equivalent to executing two separate COMPUTE statements, the first the actual diy
and the second the remainder calculation using the modulus (%) operator:

COMPUTE resulvariable = dividendrariable/divisorvariade.
COMPUTE remaindevariable = dividenerariable % divisowariable.

All variants of DIVIDE permit the use of the ROUNDEReyword, which rounds the
target variable, after computation, to the nearest integer.

Example Usage:

Variant 1:

DIVIDE 1 INTO num_variable.

DIVIDE 1 2 3 INTO num_variable.

DIVIDE value_var INTO total.

DIVIDE 1.11 2 value_var INTO total ROUNDED

Variant 2:
DIVIDE value_var INTO subtotal GIVING total.

DIVIDE 9.99 value_var INTO subtotal
GIVING result ROUNDED

DIVIDE value_var INTO subtotal
GIVING result ROUNDED
REMAINDERremainder.

Variant 3:
DIVIDE subtotal BY value_var GIVING result.

DIVIDE subtotal BY value_var GIVING result ROUNDED

DIVIDE subtotal BY value_var GIVING result ROUNDED
REMAINDERremainder.

See Also: COMPUTE
ADD
SUBTRACT
MULTIPLY

Sample Program: DIVIDE.CBL

CobolScripfDevel oper é6s Gui de Pagel31

EXEC SQL

Command: EXEC SQL (CobolScript Professional Edition On)y
Syntax: EXEC SQL
<sgtstatement>
END-EXEC.
Description: This LinkMakerE command e sgstatementsA a s i

connection must be established to the data source with the OPENDB coefiared
this command can be used. See Appendix H for further explanation and exampleg
how to use this command. See Appendix G for more information about configuring
sources.

An SQL communications area i s requir g
source. In CobolScript, this area of memory is allocated by defining the vasigble
return-codes You should include this definition in any of your programs that use
Li n k Ma hlleofttese variables are all standard ODBC return code variables:

1sqgl -return -codes.
5 sqlstate PIC X(5).
5 sqlnativeerror PIC S9(6).
5 sglerrormessage PIC X(500).
5 sqlstatement PIC X(500).

After an SQL statement has bemtecuted, these variables contain information that w
returned from the data source. The variagjistatewill contain the ODBC SQLSTATE
returned from the data souragjlnativeerrorwill contain a data sourespecific return
code;sglerrormessagwill contain text describing an error, if one occurred; and
sqlstatemenill contain a copy of the SQL that was passed to the data source. Thi
return values are provided to assist with database application debugging. Itisimp
to remember, howevemhdt these return values come from the data source, and are
therefore specific to that data sourd
specific information about the values returned to these variables.

Example Usage: EXEC SQL
insert into cus tomer
values (6Janeé6, 6Doeb, :host _var _ba
END EXEC.
See Also: OPENDB, CLOSEDB
Sample Program: SQL.CBL

EXECUTE

Command: EXECUTE
Syntax: EXECUTE <codecomponentl> <codecomponer?2 > &
Description: EXECUTE dynamically interprets a program statement contained inside

codecomponentiteral(s) or variable(s), either elementary or group item. Literal
keywords such as ACCENT are also permitted as arguments to EXECUTE.

EXECUTE is useful when some progrdogic component is undetermined prior to
program execution. See the section titted Dynamic Statement Creation and Execy
Chapter 8 for practical examples of EXECUTE usage.

An unusual form of recursion is possible by using EXECUTE to call oth&®XTE
statements, e.g.:

EXECUTE "EXECUTE statement_var’.

Although this type of recursion may be difficult to conceptualize and use for norma
programming, it is supported. The maximum permitted number of nested recursive
of this nature is 500; byssing this limit will cause CobolScript to generate a normal
error message specific to this recursion.

Pagel32

CobolScripfDevel oper é6s Gui de

Command: EXECUTE

Moderate caution should be exercised when using EXECUTE to process user inpU
naturally, it is inadvisable to accept unauthorized user input in thedba whole code
statement for use as an EXECUTE argument; however, since one EXECUTE state
can only process a single code statement, allowing user input for portions of a stat
may be appropriate, depending on your objective. The level obfligxithat you permit
in user input is directly constrained by how much you wish to restrict user actions;
therefore your decision to make.

Example Usage: 1 test_var PIC X(n) VALUE "Hello, ".
1 execute_group.

5 "DISPLAY".

5 " test_var'.

EXECUTE execute_group '& ACCENT ‘world.” ACCENT.

Sample Program: EXECUTE.CBL

FD

Command: FD
Syntax: FD <filename> RECORD IS <bytdength> BYTES.
Description: The FD statement descri bes a dabbl8cript.i |

This statement is a necessary precursor to all flat (text) file data processing work.

Thefilenameis a literal or variable that includes the name of the data file as well as
path information, which is necessary if the file is not indberent working directory of
the program. Theyteslengthis a numeric variable or literal that indicates the recorg
length, in bytes, of the file record. Thegteslengthvalue should account for any
delimiters that are in the record but shondd account for enebf-line characters; these
endof-line characters vary between Windows and Unix platforms, and this variatio|
automatically accounted for by CobolScript. Hyteslengthvalue must be exact for
statements that rely on this value, sucP@SITION, to work correctly.

Once a data file has been described, it may be opened and further processed. Fo
information on describing files, see the Data and Copybook Files section of Chaptq
CobolScript Language Construct§or more infomation on data file processing, see
Chapter 4File Processing and 1/0

CobolScripfDevel oper é6s Gui de Pagel33

Command:

FD

Example Usage:

Example with literal arguments:
FD “test.dat” RECORD IS 50 BYTES.

Example with variable arguments, which are defined prior to the FD:
1 test_file PIC X(n) VALUE ‘test.dat’.

1 bytes_length PIC 99 VALUE 50.

FD test_file RECORD IS bytes_length BYTES.

Example that includes path information for a Window<® machine:
1ltest file PIC X(n) VALUE
‘c: \ windows \ desktop \ test.dat".
1 bytes_leng th PIC 99 VALUE 50.
FD test_file RECORD IS bytes_length BYTES.

Example that includes path information for a Unix machine:
1test_file PIC X(n) VALUE “/usr/cscript/test.dat’.

1 bytes_length PIC 99 VALUE 50.

FD test_file RECORD IS bytes_length BYTES.

See Also: CLOSE
OPEN
POSITION
READ
REWRITE
WRITE
Sample Program: FTP.CBL
FTPASCI |
Command: FTPASCII
Syntax: FTPASCII.
Description: The FTPASCII command setise FTP file transfer mode to ASCIl mode (as opposeo

binary modé see FTPBINARY command below). ASCII file transfer mode should
used when the file to be transferred is an ASCII text file.

The FTPASCII command should generally be used immediatdtyd a statement that
uses the FTPPUT or FTPGET commands.

An open FTP connection must be established with FTPCONNECT prior to issuing
FTPASCII command.

The TCP/IP return code and return message variables are populated with standarc
returncodes and messages after execution of this command. They can be examin
command execution for errtrapping purposes.

See the Transferring Files Using FTP section of Chapfdetyork and Internet
Programming Using CobolScripfor more informabn on using socket commands.

Example Usage:

FTPASCII.

The FTPASCII command requires that the following variable definitions be include|
your program:

1 TCPIP - RETURNCODES.
5 TCPIP - RETURNCODE PIC 9(07).
5 TCPIP - RETURNMESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program. This copybook
includes these variable definitions.

See Also:

FTPBINARY, FTPGET, FTPPUT

Sample Program:

FTP.CBL

Pagel34

CobolScripfDevel oper é6s Gui de

FTPBI NARY

Command: FTPBINARY
Syntax: FTPBINARY.
Description: The FTPBINARY command sets the FTP file transfer mode to binary mode (as op|

to ASCII modei seeFTPASCII command above). Binary file transfer mode should
used when the file to be transferred is a-text file (any proprietary format file or
executable).

The FTPBINARY command should generally be used immediately before a stater
that uses thETPPUT or FTPGET commands.

An open FTP connection must be established with FTPCONNECT prior to issuing
FTPBINARY command.

The TCP/IP return code and return message variables are populated with standarc
return codes and messages after execuatidhis command. They can be examined aj
command execution for errdrapping purposes.

See the Transferring Files Using FTP section of Chapfdetyork and Internet
Programming Using CobolScripfor more information on using socket commands.
Example Usage: FTPBINARY.

The FTPBINARY command requires that the following variable definitions be incluj
in your program:

1 TCPIP - RETURNCODES.
5 TCPIP - RETURNCODE PIC 9(07).
5 TCPIP - RETURNMESSAGE PIC X(255).

Alternatively, include thsample file TCPIP.CPY in your program. This copybook
includes these variable definitions.

See Also: FTPASCII, FTPGET, FTPPUT

Sample Program: FTP.CBL

FTPCD

Command: FTPCD
Syntax: FTPCDUSING <directoryname>.
Description: The FTPCDcommand changes the working FTP directory on a remotgipected

machine to the directory name contained in the variable or ldeegtory-name

An open HP connection to a remote machine must first be successfully establishef
FTPCONNECT before FTPCD can be used.

The TCP/IP return code and return message variables are populated with standarc
return codes and messages after execution ofdhisnand. They can be examined af
command execution for errtrapping purposes.

See the Transferring Files Using FTP section of Chapfdetyork and Internet
Programming Using CobolScriptor more information on using socket commands.
Example Usag: FTPCD USING " \ ftp".

FTPCD USING ftp_dir.

The FTPCD command requires that the following variable definitions be included i
your program:

1 TCPIP - RETURNCODES.
5 TCPIP - RETURNCODE PIC 9(07).

CobolScripfDevel oper é6s Gui de Pagel35

Command:

FTPCD

5 TCPIP - RETURNMESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program. This copybook
includes these variable definitions.

See Also:

FTPPUT, FTPGET

Sample Program:

FTP.CBL

FTPCLOSE

Command: FTPCLOSE
Syntax: FTPCLOSE.
Description: The FTPCLOSEommand closes an FTP connection that has been made with the

FTPCONNECT command.

The TCP/IP return code and return message variabdegopulated with standard FTP
return codes and messages after execution of this command. They can be examing
command execution for errdrapping purposes.

See the Transferring Files Using FTP section of Chapfdetyork and Internet
Programmig Using CobolScriptfor more information on using socket commands.

Example Usage:

FTPCLOSE.

The FTPCLOSE command requires that the following variable definitions be includg
your program:

1 TCPIP - RETURNCODES.
5 TCPIP - RETURNCODE PIC 9(07).
5 TCPIP - RETURNMESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program. This copybook
includes these variable definitions.

See Also:

FTPCONNECT

Sample Program:

FTP.CBL

FTPCONNECT

Command: FTPCONNECT
Syntax: FTPCONNECTUSING <hostnamesuserid> <password>.
Description: The FTPCONNECTommand attempts to establish an FTP connection with a remot

machine ahostnamaisinguserid andpassword

The TCP/IP return code and return message variables are populated with standard
return codes and messages after execution of this comriiaeg.can be examined afte
command execution for errtrapping purposes.

See the Transferring Files Using FTP section of Chapfdetyork and Internet
Programming Using CobolScriptor more information on using socket commands.

Example Usage:

FTPCONNECT USING “ftp.deskware.com™ “anonymous’
‘info@deskware.com’.

FTPCONNECT USING server_var
user_id_var
password_var.

The FTPCONNECT command requires that the following variable definitions be inc
in your program:

Pagel36

CobolScripfDevel oper é6s Gui de

Command:

FTPCONNECT

1 TCPIP - RETURNCODES.
5 TCPIP - RETURNCODE PIC 9(07).
5 TCPIP - RETURNMESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program. This copybook
includes these variable definitions.

See Also: FTPCLOSE

Sampé Program: FTP.CBL

Command: FTPGET

Syntax: FTPGETUSING <filename>.

Description: The FTPGETcommand downloads a fifdenamefrom a connected remote machine vi

the FTP protocol.

An open FTP connection to a remote machine must first be successfully establisheq
FTPCONNECT before FTPGET can be used. The file transfer type is either ASCII
binary, and this can be set prio calling FTPGET by using the FTPASCII and
FTPBINARY commands.

The TCP/IP return code and return message variables are populated with standard
return codes and messages after execution of this command. They can be examing
command executiofor errortrapping purposes.

See the Transferring Files Using FTP section of Chapfdetyork and Internet
Programming Using CobolScripfor more information on using socket commands.

Example Usage:

FTPGET USING 'test.dat’.
FTPGET USING test_file.

The FTPBINARY command requires that the following variable definitions be includ
your program:

1 TCPIP - RETURNCODES.
5 TCPIP - RETURNCODE PIC 9(07).
5 TCPIP - RETURNMESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY iouy program. This copybook
includes these variable definitions.

See Also: FTPPUT, FTPASCII, FTPBINARY

Sample Program: FTP.CBL

Command: FTPPUT

Syntax: FTPPUTUSING <filename>

Description: The FTPPUTcommand uploads a fildlenameto a remote machine via the FTP protoc

An open FTP connection to a remote machine must first be successfully establisheq
FTPCONNECT before FTRFT can be used. The file transfer type is either ASCII or
binary, and this can be set prior to calling FTPPUT by using the FTPASCII and
FTPBINARY commands.

CobolScripfDevel oper é6s Gui de Pagel37

Command:

FTPPUT

The TCP/IP return code and return message variables are populated with standard
return codesrad messages after execution of this command. They can be examined
command execution for errtrapping purposes.

See the Transferring Files Using FTP section of Chapfdetyork and Internet
Programming Using CobolScripfor more information omising socket commands.

Example Usage:

FTPPUT USING "upload.dat.
FTPPUT USING test_file.

The FTPBINARY command requires that the following variable definitions be includ
your program:

1 TCPIP - RETURNCODES.
5 TCPIP - RETURNCODE PIC 9(07).
5 TCPIP - RETURNMESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program. This copybook
includes these variable definitions.

See Also:

FTPGET, FTPASCII, FTPBINARY

Sample Program:

FTP.CBL

GETBANNER

Command: GETBANNER

Syntax: GETBANNERUSING <bannetnput> <bannecharactefinput> <bannetarget
variable>.

Description: GETBANNERplaces a Unistyle banner into a group item variable. The contents ¢

bannerinputare the large characters of the banner; the contebenokercharacter
inputare the component characters of the banner, which are the small characters
make thebanner letters. annercharacterinputis equal to a single space ("~ or the
SPACE keyword), the component character of each large letter will be a smaller v
of itself, e.g.,

GETBANNER USING "TEST" SPACE banner_target_variable
will generatethe following output fobannertargetvariable population:

TTTTTTT EEEEEEE SSSSS TTTTTTT
T E S § T

T E S T

T EEEEE SSSSS T

T E S T

T E S S T

T EEEEEEE S SSSS T

To work properly, GETBANNERequires that thbannertargetvariable be defined as
a group item with 8 elementary items. See example below.

Example Usage:

1 text_banner_char PIC X VALUE “#'.
1 banner_group.

banner_linel PIC X(35).
banner_line2 PIC X(35).
banner_line3 PIC X(35).
banner_line4 PIC X(35).
banner_line5 PIC X(35).
banner_line6 PIC X(35).
banner_line7 PIC X(35).
banner_line8 PIC X(35).

(628}

oo ool oo

GETBANNER USING "TEST" '# banner_group.

Pagel38

CobolScripfDevel oper é6s Gui de

Command:

GETBANNER

DISPLAYLF banner_group.

GETBANNER USING text banner_char banner_group.
DISPLAYLF banner_group.

See Also:

BANNER

Sample Program:

GETBAN.CBL

GETCALENDAR

Command: GETCALENDAR
Syntax: GETCALENDAR USING <yearinput> <monthinput> <calendatargetvariable>.
Description: The GETCALENDARcommand places a calendar for a given yearinputand a

given monthmonthinputinto a target group item variabdalendartargetvariable The
yearinputandmonthinput should be numeric values;tiey are variables, their variab
declarations must have numeric picture clauses. Any fractional comporyeat-toput
or monthinputwill be ignored, e.g., amonthinput of 11.88 will be processed as 11.

GETCALENDAR does not support préulian calendar dates, i.e., any date prior to
August 1752.

To work properly, GETCALENDARequires that thealendartargetvariable be
defined as a group item with 8 elementary items. See the Example Usage below.

Example Usage:

1 year_var PIC 9(4) VALUE 2001.
1 month_var PIC 99 VALUE 1.

1 calendar_group.

calendar_linel PIC X(30).
calendar_line2 PIC X(30).
calendar_line3 PIC X(30).
calendar_line4 PIC X(30).
calendar_line5 PIC X(30).
calendar_line6 PIC X(30).
calendar_line7 PIC X(30).
calendar_line8 PIC X(30).

(616}

oo or oo

GETCALENDAR USING 2001 1 calendar_group.
DISPLAYLF calend ar_group.

GETCALENDAR USING year_var month_var calendar_group.
DISPLAYLF calendar_group.

See Also:

CALENDAR

Sample Program:

GETCAL.CBL

GETCMDLI NE

Command: GETCMDLINE
Syntax: GETCMDLINE <numargs> <args>
Description: The GETCMDLINE command wiltetrieve the input parameters supplied to the prog

upon execution.

Example Usage:

GETCMDLINE WSNUMARGS WSARGS

See Also:

CALL

Sample Program:

GETCMDLINE.CBL

CobolScripfDevel oper é6s Gui de Pagel39

GETENYV

Command: GETENV
Syntax: GETENV USING <environmentalariable><cobolscriptvariable>.
Description: The GETENV command accepts a literal or variable whose contents are an operat

system environmental variablenvironmentabariable, from the operating system
environment and copies the value to the variableolript-variable Environmental
variables are values that are set by the operating system and provide information 4
the current operating environment.

This command can be used in CobolScript internet programs that need to get infor
about their wb server environment. See Chapter 7 for a list of the environmental
variables that are made available by a web server.

Example Usage:

Example that uses a literal as the environmental variable argument:
GETENV USING "CONTENT_LENGTH" content_length_var.

Example that uses a variable as the environmental variable argument:
1 env_variable PIC X(n) VALUE "CONTENT_LENGTH".
GETENV USING env_variable content_length_var.

See Also:

ACCEPT

Sample Program:

GETENV.CBL

GETHOSTBYNAME

Command: GETHOSTBYNAME
Syntax: GETHOSTBYNAMEUSING <hosthame>
Description: The GETHOSTBYNAME command resolvestastnameand returns detailed

information about the host. Th®stnamehat is supplied can either be the name of tf
host or an IP address. The information returned about a host is stored in the TCP
HOSTENT grouplevel data item variable (see below). It contains all of the aliases
this IP address, other IP addresassociated with this host, the address type, and th¢
address length.

The TCP/IP return code and return message variables are populated with standarc
TCP/IP return codes and messages after execution of this command. They can b
examined after commandeoution for errotrapping purposes.

See the Using TCP/IP Commands section of Chaptdetyork and Internet
Programming Using CobolScripfor more information on using DNS commands.

Example Usage:

GETHOSTBYNAMHBSING “deskware.com’.
GETHOSTBYNAMHBSING "206.228.224.17".
GETHOSTBYNAMHBSING ip_variable.

The GETHOSTBYNAMEcommand requires that the following TCP/IP variable
definitions be included in your program:

1 TCPIP - HOSTENT.

5 TCPIP - HOSTENTHOSTNAME PIC X(255).
5 TCPIP - HOSTENTNUMALIASES PIC X(01).
5 TCPIP - HOSTENTALIASES OCCURS 8 TIMES.
10 TCPIP - HOSTENTALIAS PIC X(255).
5 TCPIP - HOSTENTADDRESSTYPE PIC 9(07).
5 TCPIP - HOSTENTADDRESSLENGTH PIC 9(07).
5 TCPIP - HOSTENTNUMADDRESSES PIC X(01).
5 TCPIP - HOSTENTADDRESSES OCCURS 8 TIMES.
10 TCPIP - HOSTENTADDRESS PIC X(255).

Pagel40

CobolScripfDevel oper é6s Gui de

Command:

GETHOSTBYNAME

1 TCPIP - RETURNCODES.
5 TCPIP - RETURNCODE
5 TCPIP - RETURNMESSAGE

PIC 9(07).
PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program. This copybook
includes these variable definitions.

See Also:

GETHOSTNAME

Sample Program:

GETHN.CBL, DNS.CBL

GETHOSTNAME

Command: GETHOSTNAME
Syntax: GETHOSTNAMEUSING <hostnameariable>.
Description: GETHOSTNAMEDplaces the hostnantd the current machine (the one on which

CobolScript is installed) in the target variahlestnamevariable The hostname is a
machinespecific parameter that gemadly is derived from the /etc/hosts file on Unix
machines, and from the registry on Windows machines.

The TCP/IP return code and return message variables are populated with standarg
TCP/IP return codes and messages after execution of this commandcafitey
examined after command execution for eftrapping purposes.

See the Using TCP/IP Commands section of Chaptdeyork and Internet
Programming Using CobolScripfor more information on using DNS commands.

Example Usage:

GETHOSTNAMBJSING hostname_var.

The GETHOSTNAMEcommand requires that the following TCP/IP variable
declarations be included in your program:

1 TCPIP - HOSTENT.
5 TCPIP - HOSTENTHOSTNAME PIC X(255).
5 TCPIP - HOSTENTNUMALIASES PIC X(01).
5 TCPIP - HOSTENTALIASES OCCURS 8 TIMES.

10 TCPIP - HOSTENTALIAS PIC X(255).
5 TCPIP - HOSTENTADDRESSTYPE PIC 9(07).
5 TCPIP - HOSTENTADDRESSLENGTH PIC 9(07).
5 TCPIP - HOSTENTNUMADDRESSES PIC X(01).

5 TCPIP - HOSTENTADDRESSES OCCURS 8 TIMES.

10 TCPIP - HOSTENTADDRESS PIC X(255).
1 TCPIP - RETURNCODES.
5 TCPIP - RETURNCODE PIC 9(07).
5 TCPIP - RETURNMESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program. This copybook
includes these variable definitions.

See Also: GETHOSTBYNAME

Sample Program: GETHN.CBL

Command: GETMAIL

Syntax: GETMAIL USING <ema#address> <password> <emailmber> <emaifilename>

<smtpserver>.

CobolScripfDevel oper é6s Gui de

Pagel41

Command:

GETMAIL

Description:

The GETMAIL command connects tmtpserverusingemailaddressandpassword
andretrieves the emaihessage whose numbeeisiailtnumber The email message is
appended to the filemaitfilename

The TCP/IP return code and return message variables are populated with standarg
TCP/IP return codes and messages after exacaofithis command. They can be
examined after command execution for effrapping purposes.

See the Using Email Commands section of Chapte6york and Internet
Programming Using CobolScriptor more information on email commands.

Example Usage:

Literal argument example:
GETMAIL USING ‘info@deskware.com™ "12jkd™ 1 "MAIL.TXT"
“deskware.com’.

Variable argument example:

GETMAIL USING email_address
password
number_of_mail_to_get
mail_file
smtp_server.

The GETMAIL command requires that the following variable definitions be include(
your program:

1 TCPIP - RETURNCODES.
5 TCPIP - RETURNCODE PIC 9(07).
5 TCPIP - RETURNMESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program. This copybook
includes these variable definitions.

See Also:

SENDMAIL, GETMAILCOUNT

Sample Program:

MAIL.CBL

GETMAI

LCOUNT

Command: GETMAIL COUNT

Syntax: GETMAILCOUNT USING <ema#address> <password> <cowrgdriable> <smtp
server>.

Description: The GETMAILCOUNT command connects 8mtpserverusingemaitaddressand

password determines the number of ensathat are in the account femaitaddressand
populatesownt-variablewith this number.

The TCP/IP return code and return message variables are populated with standarc
TCP/IP return codes and messages after execution of this command. They can bg
examined after command execution for effrapping purposes.

Seethe Using Email Commands section of ChapteMéwork and Internet
Programming Using CobolScriptor more information on email commands.

Example Usage:

Example with literal arguments for email address, password, and smtp server:
GETMAILCOUNTUSING “info@deskware.com™ "12F3g" email_count
‘deskware.com’.

Example with variable arguments:

GETMAILCOUNTUSING email_address
password
email_count
smtp_server.

The GETMAILCOUNT command requires that the following variable definitions be
included in your program:

Pagel42

CobolScripfDevel oper é6s Gui de

Command:

GETMAIL COUNT

1 TCPIP - RETURNCODES.
5 TCPIP - RETURNCODE PIC 9(07).
5 TCPIP - RETURNMESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program. This copybook
includes these variable definitions.

See Also: GETMAIL

Sample Program: MAIL.CBL

Command: GETMAILSIZE

Syntax: GETMAILSIZE USING <email address> <email password> <email number> <pop!
server> <size of emails>

Description: The GETMAILSIZE command is used to determine the size in bytes ehail

message.

Example Usage:

GETMAILSIZE USING WS- EMAIL WS- PASS WS NUM WSPO3 WS EMAIL-
SIZE.

See Also:

GM.CBL, SM.CBL

Sample Program:

SIZE.CBL

GETSHMPOOL

Command: GETSHMPOOL
Syntax: GETSHMPOOL <share memory pool id> <data>
Description: The GETSHMPOOL command will read the contents of a share memory pool and

populate a variable with the contents.

Example Usage:

GETSHMPOOL WSHM ID WS - DATA

See Also:

PUTSHMPOOL, CREATESHMPOOL, DETACHSHMPOOL

Sample Program:

SHM1.CBL, SHM2.CBL

GETTI MEFROMSERVER
Command: GETTIMEFROMSERVER
Syntax: GETTIMEFROMSERVERUSING <hostname> <servime-variable>.
Description: GETTIMEFROMSERVERcontacts a servdrostnameand retrieves and stores the loc

time from that machine in a varialdervertime-variable The variable can be either tl
name of the host or the IP address.

Note that currently the GETTIMEFROMSERVERmMmMand will only work
successfully if a time daemon is running ontlestnameserver; if a time daemon is no
running onhostnamethe GETTIMESERVER command will wait indefinitely for a
response from the server. If this happens, the process nmkietenanually to
properly terminate execution of the CobolScppigram. Generally, you should only

CobolScripfDevel oper é6s Gui de

Pagel43

Command:

GETTIMEFROMSERVER

use GETTIMEFROMSERVER when you are certain that a time daemon is running
hostname

The TCP/IP return code and return message variables are pomithtstandard
TCP/IP return codes and messages after execution of this command. They can be
examined after command execution for effrapping purposes.

Example Usage:

GETTIMEFROMSERVERSING “purdue.edu” server_time.
GETTIMEFROMSERVERSING server_var server_time.

The GETTIMEFROMSERVER command requires that the following variable
definitions be included in your program:

1 TCPIP - RETURNCODES.
5 TCPIP - RETURNCODE PIC 9(07).
5 TCPIP - RETURNMESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program. This copybook
includes these variable definitions.

See Also:

GETHOSTNAME, GETHOSTBYNAME

Sample Program:

IPTIME.CBL

GETWEBPAGE

Command: GETWEBPAGE
Syntax: GETWEBPAGE<hostnamexwelpagepath> <webpagéilename>.
Description: The GETWEBPAGEommand connects tmstnamaising the HTTP protocol, and

retrieves the webpage at locatieebpagepath This webpage is then written to the fil
webpagedilename replacing any previous contentsveébpagefilename

The TCP/IP return code and return message variables are pdpuidtestandard
TCP/IP return codes and messages after execution of this command. They can bg
examined after command execution for effrapping purposes.

Example Usage:

GETWEBPAGEvww.deskware.com™ ‘“/index.htm® ‘DESK.TXT".
GETWBPAGEserver_var path_var filename_var.

The GETWEBPAGE command requires that the following variable definitions be
included in your program:

1 TCPIP - RETURNCODES.
5 TCPIP - RETURNCODE PIC 9(07).
5 TCPIP - RETURNMESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program. This copybook
includes these variable definitions.

See Also: GETHOSTNAME, GETHOSTBYNAME

Sample Program: WEB.CBL

Command: GOBACK

Syntax: GOBACK.

Description: The GOBACKcommand ends the execution of a program. No commands following

GOBACK will be executed. There is no material difference between GOBACK an(
STOP RUNin CobolScript.

Pagel44

CobolScripfDevel oper é6s Gui de

Command:

GOBACK

For COBOL programmers, note that GOBACHnist the equivalent of the COBOL
GOBACK command.

Example Usage: GOBACK.
See Also: STOP RUN
Sample Program: GOBACK.CBL
Command: IF
Syntax: IF <conditior [THEN]
<statement>
[ELSIF <elsif-condition>
]
[ELSIF <elsif-conditiorr2>
]
[ELSE
<statement>
]
END-IF
Description: The IFstatement is a basic programming construct; it controls progranbfised on

whether a conditioevaluates to TRUE or FALSE.

IF first evaluategondition and ifconditionis TRUE, excutes the statement(s)
following condition(or after the optional THEN keyword) and then leaves the IF claj
by passing control to the statement following the EIRIxeyword. If conditionis
FALSE, control passes to the next ELSIF clause or ELSE kelywarne or these exists
If an ELSIF clause existg]sif-conditionis evaluated. lélsif-conditionis TRUE, the
statements following the ELSIF clause are executed, and control is passed to the
statement following the ELSIF keyword. dsif-condition is FALSE, control passes to
the next ELSIF or ELSE, if one exists. If an ELSE is reached and all prior conditiol
and ELSIF conditions have evaluated to FALSE, the statement(s) after the ELSE
keyword are executed. For this reason, if yoecfy an ELSE clause it should always
be the last part of your IF statement.

There is no imposed limit to the number of ELSIF clauses that may be specified.
Practical limits do exist due to program size limits, but you should not encounter th
limits in normal programming.

ELSIF clauses should always be placed in the order that you want each ELSIF con
evaluated, if the order is relevant. Generally, the use of ELSIF clauses will necess
the use of an ELSE to cover all otheresiggood programming practice warrants the |
of an ELSE when using ELSIFs even if no action should be taken in the ELSE cas|
This can be done by wusing the CONTI NU

nothingbé statement, as in the foll owi
IF var>1
DISPLAY "Greater than one”
ELSIF var =1
DISPLAY "Equal to one”
ELSIF var<0
DISPLAY °Less than zero®
ELSE
CONTINUE

CobolScripfDevel oper é6s Gui de Pagel45

Command:

IF

END IF.

Conditionandelsif-conditionare any normal expressions that evaluate to a number;
typically, conditions are statements of fact, and therefore can only evaluate to 1 (T|
or 0 (FALSE), as in the following cases:

IF var>=1

IF letter IS ALPHABETIC THEN

IF AL PHABETIC(letter)

IF a=10Ra=2THEN

IF (x+y+2)ISNOT GREATER THAN6 ANDy =4

In the above cases, all TREH#valuating conditions have an integer value of 1.
However, in CobolScript, any nonzero condition resutbissidered TRUE, and only
zero results are considered FALSE. Therefore, the following type of conditions are
possible in CobolScript:

IF (75) THEN
IF var

IF NOT(var)
IF x+y+z

For COBOL programmersiote that CobolScript enforceslike rules for expression
construction. COBOL constructs such as implied subjects and implied operators
encourage poor programming practices and are not permitted in CoboiSadtipt
conditions must be completely and agjily defined.

For more information on conditions and expressions, refer to the Expressions and
Conditions section in Chapter GpbolScript Language Constructs

Example Usage:

IF varl >var2

DISPLAY ‘varl is greater than var2’
ELSIF var <var2

DISPLAY ‘varl is less than var2®
ELSE

DISPLAY ‘varl is equal to var2
END IF

Sample Program:

IF.CBL

| NCLUDE

Command: INCLUDE
Syntax: INCLUDE <copybookliteral>.
Description: INCLUDE loads the file named by the literal valo@pybooKiteral into a CobolScript

program. The code that is in the copybook file is loaded and executed as if it were
of the loading program, exactly in the position of the COPY statement.

In CobolScript, there is no material difference between INCLAD& COPY.

Example Usage:

INCLUDE "COPYBOOK.INC".

INCLUDE copybook_var.

See Also:

COPY

Sample Program:

COPY.CBL

Pagel46

CobolScripfDevel oper é6s Gui de

| NI TI ALl ZE

Command: INITIALIZE
Syntax: INITIALIZE <init-variable>.
Description: The INITIALIZE command moves SPACES or ZEROS to variafitevariable

SPACES arenoved to the variable if it is defined as alphanumeric (PIC X) and ZER
if it has been defined as numeric (PIC 9).

Note that CobolScript automatically initializes all variables that have VALUE clause
for this reason, using a VALUE clause is normallgfprred to using the INITIALIZE

statement.
Example Usage: INITIALIZE varl.
Sample Program: INIT.CBL

LI STENTOSOCKET

Command: LISTENTOSOCKET
Syntax: LISTENTOSOCKETUSING <sockenumber> <backlogiueuelength>.
Description: The LISTENTOSOCKETcommand prepares a socketketnumberto accept an

incoming connection. Thigacklogqueuelengthis the number of incoming connectior
requests permitted to queue while accepted connections are processed.

LISTENTOSOCKETshould be called prior to using ACCEPTFROMSOCKET.

This command is conventionally used only on the machine that is considered to be
server in tweway socket connecti@n

The TCP/IP return code and return message variables are populated with standarc
TCP/IP return codes and messages after execution of this command. They can b¢
examined after command execution for effrapping purposes.

See the Using TCP/IP Commands section of Chaptdetyork and Internet
Programming Using CobolScriptor more information on using socket commands.
Example Usage: LISTENTOSOCKETUSING socket_num_var backlog_num_var.

The LISTENTOSOCKET command requires that the following TCP/IP variable
declarations be included in your program:

1 TCPIP - RETURNCODES.
5 TCPIP - RETURNCODE PIC 9(07).
5 TCPIP - RETURNMESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program with a COPY or
INCLUDE statement. This copybook includes these variable definitions.

See Also: ACCEPTFROMSOCKET CREATESOCKET
BINDSOCKET RECEIVESOCKET
CLOSESOCKET SENDSOCKET
CONNECTTOSOCKET SHUTDOWNSOCKET
Sample Program: SERV.CBL

L OWER

Command: LOWER

Syntax: LOWER <variable>

Description: The LOWER command converts the contents of <variable> to lower case.
Example Usage: LOWER WSNAME

CobolScripfDevel oper é6s Gui de Pagel47

Command: LOWER

See Also: UPPER

Sample Program: LOWER.CBL

Command: LTRIM

Syntax: LTRIM <variable>

Description: The LTRIM command removes leading space characters from <variable>.
Example Usage: LTRIM WS- NAME

See Also: TRIM, RTRIM

Sample Program: TRIM.CBL

Command: MOVE

Syntax: MOVE <sourcedata> TO <targetariable>.

Description: The MOVEstatement copies the contents of a literal or varislolercedata, to the

contents of theargetvariable

In the cases of an alphanumeric to alphanumari alphanumeric to numeric, or a
numeric to alphanumeric MOVE, if the length of 8murcedatacontents is greater tha
the length ofargetvariable, targetvariableis populated with theourcedata
characters from left to right, and the remainingrse characters are discarded.

In the case of a numeric to numeric MOVE, if the length of the contestuofedata
is greater than the length @frgetvariable targetvariableis populated as follows:

9 Digits to the right of the decimal point are populatethigetvariable
from left to right, and remaining digits in tiseurcedatadecimal are
discarded, for example:

If varl is defined as PIC 9.99,
MOVE 5.432 TO varl
will place 5.43 in varl.

1 Digits to the left of the decimal point are populatethirgetvariable
from right to left, and remaining higher digits in theurcedataare
discarded, for example:

If varl is defined as PIC 9.99,
MOVE 65.432 TO varl
will place 5.43 in varl.

Besides snple moves, MOVE also allows a group item to be moved to another grol
item, or a group item to be moved to an elementary item. MOVE also permits bott
source and target variables to use positional string referencing; refer to the section
Manipulating CobolScript Variables in Chapter 8 for further details.

Example Usage:

Simple MOVE:
MOVE varl TO var2.

MOVE with positional referencing of source variable:
MOVE varl(1:2) TO var3.

MOVE with positional referencing of target variable:
MOVE “test’ TO var5(start_position:length).

See Also:

SET

Sample Program:

MOVE.CBL

Pagel48

CobolScripfDevel oper é6s Gui de

MULTI PLY

Command: MULTIPLY

Syntax: Variant 1:
MULTIPLY <number or var ivarbblee[ROUNDEHR)Y <t ar ge |

Variant 2:
MULTIPLY <nu mber or variable> é BY <numb
variable> [ROUNDED)]

Description: Variant 1 of MULTIPLY is used to multiply one or more numeric literals and/or
numeric variables together, storing the result in the nurtemgetvariable. All literals
and variables are multiplied together to produce the result, including the vaduigen
variableprior to the multiplication.

Variant 2 of MULTIPLY is used to multiplyone or more numeric literals and/or
variables together, with the result storedargetvariable whose original contents are
not considered in the multiplication. Thus, if VAR has an initial value of 3, performij
the operation MULTIPLY 2 BY 2 GIVING ¥AR will place a value of 4, not 12, into
VAR.

Both formsof MULTIPLY permit the use of the ROUNDEKeyword, which rounds the
target variable (after computation) to the res&integer.

Example Usage: Variant 1:

MULTIPLY 2 BY num.

MULTIPLY 2 3 BY num.

MULTIPLY value BY total.

MULTIPLY 1.11 2 value BY total ROUNDED

Variant 2:

MULTIPLY value BY subtotal GIVING total.
MULTIPLY 2 BY 3 GIVING total ROUNDED.
See Also: COMPUTE

ADD

SUBTRACT

DIVIDE

Sample Program: MULTIPLY.CBL

OPEN

Command: OPEN

Syntax: OPEN<filename> FOR READING [DELIMITED WITH <delimitecharacter>].
OPENc<filename> FOR WRITING [DELIMITED WITH <delimitecharacter>].
OPENc<filename> FOR APPENDING [DELIMITED WITH <delimitecharacter>].

OPENc<filename> FOR UPDATING [DELIMITED WITH <delimitecharacter>].

Description: OPEN:Is used to open a text data file named by the literal or varfigd@mefor
READING, UPDATING, WRITING (which positions the disk head at the beginning
the file), or APPENDING (which positions the disk head at the end of the file).

The FOR UPDATING clause allows the update records in an existing data file. Us¢
conjurction with the REWRITE statement.

The DELIMITED WITH option treats thdelimitercharacter(which must be a single
character literal value or variable, or a character keyword such as TAB or SPACE)
separator between fields, rather than relyindield lengths to define where record
fields begin and end inside the file (as is the case when DELIMITED WITH is omitt]
The delimiter can be any character that is in the ASCII character set, but remembe

CobolScripfDevel oper é6s Gui de Pagel49

Command:

OPEN

no delimiter characters may appear insidg af the record fields; otherwise, an
unintended field separation will occur.

For more information on file manipulation, refer to Chaptéfile, Processing and 1/0

Example Usage:

OPEN test_file_var FOR READING.

OPEN 'TEST.DAT" FOR READING DELIMITED WITH °,".
OPEN ‘TEST.DAT" FOR UPDATING DELIMITED WITH TAB.
OPEN test_file_var FOR WRITING.

OPEN test_file_var FOR APPENDING DELIMITED WITH °|".

OPENtest_file_var FOR UPDATING DELIMITED WITH delim_var.

See Also:

CLOSE
FD
POSITION
READ
REWRITE
WRITE

Sample Program:

10.CBL

Command: OPENDB (CobolScript Professional Edition On)y
Syntax: OPENDB USING <datasourcename> <useid> <password>returncodevariable>.
Description: The OPENDB command opens a LinkMake&onnection to a data sourdata-source

nameusinguserid andpassword Upon completion, OPENDB populategurn-code
variablewith an integer value of 1 (success) or O (failure).

For OPENDB to work correctly, an ODBC driver for the specific data source must |
installed, and a DSN (Data Source Name) must be defined. On Unix platform mad
UnixODBC must also be installedipr to using any LinkMaker commands.

See Appendix G for more information about configuring LinkM&keata sources and
installing and configuring UnixODBC on Unix platform machines.

Example Usage:

OPENDB USING data_source user_id password ret_code.

SeeAlso: CLOSEDB
EXEC SQL
Sample Program: SQL.CBL
Command: PERFORM
Syntax: Variant 1, Standard PERFORM:
PERFORM <modul@mame>.
Variant 2, PERFORM .. UNTIL:
PERFORM <modulemame> UNTIL <condition.
Variant 3, Inline PERFORM:
PERFORM UNTIL <conditior
END-PERFORM
Description: The basic PERFORM statement has three variants in CobolScript:

Pagel50

CobolScripfDevel oper é6s Gui de

Command: PERFORM

Variant 1, Standard PERFORM:

The standard PERFORM passes program control to a program nnoaldildenamea
single time, and then returns control to the statement following the PERFORM. W|
the PERFORM is encountered during program execution, control passes immedial
the first line of code withimodulename The code withimmodulenamethen executes;
after the last statement modulenamehas been processed, control is returned to the
immediately following the PERFORM statement, and program execution continues
normally.

Variant 2, PERFORM .. UNTIL:

PERFORM .. UNTIL is used to pgprogram control to a program modutedulename
multiple times, unticonditionis satisfied. Execution of the code witmrodulenameis
similar to the standard PERFORM.

When a PERFORM .. UNTIL statement is encountered during program execution,
condiion is immediately evaluated; if it evaluates to FALSfdulenameis executed,
and control returns to the beginning of the PERFORM .. UNTIL statement, so that
conditioncan be evaluated again. cinditionevaluates to TRUENodulenameis not
executedand control passes to the statement following the PERFORM .. UNTIL.

There are two important points to keep in mind when using PERFORM .. UNTIL:

9 First, remember thatonditionmust evaluate to TRUE in order for control to
be passed to the statement foliogrthe PERFORM .. UNTIL; if condition
always evaluates to FALSE, the program will be caught in an endless loo|
repeatedly performing the codermodulename To avoid this, some of the
code withinmodulenamemust change some componentohdition sothat
conditionwill eventually be TRUE.

1 Second, remember thednditionis always evaluated prior to the execution ¢
modulename Therefore, itonditionevaluates to TRUE the first time that tf
PERFORM .. UNTIL is encountered, the coderindulenamewill never be
performed.

More information on conditions, condition evaluation, and permitted condition synti
available in the Command Reference entry for IF, and in the Expressions and Con
section in Chapter obolScript Language Constructs

Variant 3, Inline PERFORM:

The Inline PERFORM is simply a variation of PERFORM .. UNTIL. Instead of
performing a separate module, however, it executes the code that is between the
PERFORM and ENEPERFORM statements multiple times, unbhditionis satsfied.
Example Usage: Variant 1:

PERFORM INIT.

Variant 2:
PERFORM PROCESSING UNTIL counter = 5.

Variant 3:
PERFORM UNTIL counter =5
ADD 1 TO counter
DISPLAY ‘counter = & counter
END PERFORM
See Also: IF (for explanation of conditiopvaluation, PERFORM .. VARYING
Sample Program: PERFORM.CBL

PERFORM. VARYI NG

Command: PERFORM .. VARYING

Syntax: Variant 1, Standard PERFORM .. VARYING:

CobolScripfDevel oper é6s Gui de Pagel51

Command:

PERFORM .. VARYING

PERFORM <modulsmame> VARYING <varyingvariable>
FROM <fromamount> BY <incremeramount> UNTIL <condition>.

Variant 2, Inline PERFORM VARYING:

PERFORM VARYING <varyingvariable>
FROM <fromamount> BY <incremeramount> UNTIL <condition>

END—PERFORM

Description:

PERFORM .VARYING has two variants in CobolScript:

Variant 1, Standard PERFORM .. VARYING:

The standard PERFORM .. VARYING is used to pass program control to a progral
modulemodulenamemultiple times, unticonditionis satisfied, while also incrementin
varying-variablewith each call tanodulename Condition evaluation, and the
execution ofmodulename are handled in the same way as PERFORM .. UNTIL; se!
Variant 2 in the PERFORM command description above for details.

In a PERFORM .. VARYING, thearyingvariableis initialized on the first loop pass,
or incremented for every pass other than the first, tbeditionis evaluated, then
modulenameis performed, in that order. This happens as follows:

1 On the first pass through the PERFORM .. VARYING statement, the
varyingvariableis first initialized tofrom-amount then, ifcondition
evaluates to FALSE, the codernodulenameis executed, and control
returns to the beginning of the PERFORM .. VARYING condition
evaluates to TRUE on the first pasmdulenameis not performed.

1 From the second pass through the PERFORM .. VARYING and all
subsequent passegryingvariableis first incremented bincrement
amount if conditionevaluates to FALSHnodulenameis performed, anc
control returns to the beginning of the PERFORM .. VARYING. If
conditionevaluates to TRUE, control passes to the statement followir]
the PERFORM .. VARYING.

Incrementamountcan be any nonzero number or numeric variabldetwement the
varying-variablerather than increment it, use a negative valuénitrementamount

More information on conditions, condition evaluation, and permitted condition synti
available in the Command Reference entry for IF, and in the Expnesand Conditions
section in Chapter ZobolScript Language Constructs

Variant 2, Inline PERFORM VARYING:
The Inline PERFORM VARYING is a variation of PERFORM .. VARYING. Instea
of performing a separate module, however, it executes the code that is between th
PERFORM and ENEPERFORM statements multiple times, unbhditionis satisfied.

Example Usage:

Variant 1:

PERFORM PROCESSING
VARYING varying_nbr
FROM5BY i1l
UNTIL varying_nbr = 0.

Variant 2:
PERFORM VARYING varying_nbr
FROM 10 BY 2 UNTIL SQRT(varying_nbr)>=4
DISPLAY ‘varying_nbr =" & varying_nbr
END PERFORM

Pagel52

CobolScripfDevel oper é6s Gui de

Command: PERFORM .. VARYING

See Also: IF (for explanation of condition evaluation), PERFORM.
Sample Program: PERFORM.CBL

POSI TI1 ON

Command: POSITION

Syntax: Variant 1, Absolute POSITION:
POSITION <filename>AT RECORD <recorehumber>.

Variant 2, Relative POSITION:

POSITION <filename> RELATIVE OFFSET <numbef-records>.

Description: The POSITION statement positions the file pointdiilenameat the beginning of a
particular record within a text data file in a single step.

POSITION can be used to simulate an indexing system within flat files; if a data file
a sequential numeric value as the record key value, a record within the file can
randomly (directly) accessed given that key value. This functionality is similar to
COBOL relative file processing.

When using the POSITION statement, the number of bytes specified in the BYTES
clause of the FD statement for your file must exactly m#te number of bytes in the
data file record; this value is used to reposition the file pointer, and a BYTES value]
is larger or smaller than the actual data record size will cause the file pointer to be
incorrectly positioned.

Variant 1, Absolute POSITION:

The absolute POSITION moves the file pointer directly to the beginning of the recc
record-number which must be a numeric literal or variable. The first record in the fi
considered to be record number 1; thereferegrd-numbermust bea positive integer,
and its value must fall within the range:

(1 <=record-numbe <= total number of records in file)

Therecordnumbervalue (and hence the number of records in your data file) canno]
exceed 2,147,483,647 (2.1 billion).

Variant 2, Relative POSITION:

The relative POSITION moves the file pointer relative to its current posihlumber
of-recordsmust be an integeralued numeric literal or variable. This value indicates
number of records, counting from the current record, that the file pointer should be
moved. Thus, a value of 1 will shift the file pointer one record forward in the data fil
value ofi 1 will shift the file pointer one record back. The valueomberof-records
must fall within the absolute range:

(-2,147,483,647 <aumberof-records<= 2,147,483,647)

A numberof-recordsvalue that causes the file pointer to be pos#ttbhefore the
beginning of the data file or after the end of the data file will cause a CobolScript e|

When using relative POSITION, keep in mind that certain file operations such as R
WRITE, and REWRITE will advance the file pointer by one recoftius, in the
following code, the second READ statement will read the eighth record in the file, 1
the seventh, because the first READ and the second POSITION advance the file p
by one record each:

POSITION file_name AT RECORD 6.
READ file_name INTO record_var.

CobolScripfDevel oper é6s Gui de Pagel53

