

cobolscript
Developerõs Guide

®

cobolscriptÈ Developerõs Guide

Copyright © 1996-2017 Matt Dean. All Rights Reserved.

Copyright © 1996-2017 Matt Dean. All Rights Reserved.

This manual and its entire contents are copyrighted material. No part of this manual may be reproduced in any form or by any means,
either electronic or mechanical, including photocopying and recording, for any purpose without the express written permission of Matt
Dean. Information contained herein is subject to change without prior notice. All names and data in this manual are fictitious except
where otherwise noted. The software described in this manual is furnished under a license agreement. The software may be used or
copied only in accordance with the terms of the agreement.

The term òcobolscriptó is a registered trademark of Matt Dean. All other product names, including but not limited to the terms òVACEó
, òVACE Maintenance Workbenchó are trademarks or registered trademarks of Matt Dean.

Microsoft Windows and MS-DOS are registered trademarks of Microsoft Corporation.
Linux is a registered trademark of Linus Torvalds.
FreeBSD is a registered trademark of FreeBSD Inc. and Walnut Creek CDROM.
SunOS, Solaris, and Sun are registered trademarks of Sun Microsystems, Inc.
SQL*Loader and Oracle are registered trademarks of Oracle Corporation.

All other brand and product names mentioned herein are trademarks or registered trademarks of their respective holders.

Matt Dean
PO Box 6066

Chattanooga, TN 37401

Phone: 423-888-7475

World Wide Web: www.cobolscripting.cloud

Enjoy your programming.

http://www./

Table of Contents

Chapter 1 Introduction to CobolScript® / Installation Instructionsééééé. 1
 CobolScript Featuresééééé.ééééé.ééééé.éééé. 2
 About this Manualéééééé.ééééé.ééééé.éééé. 3
 Installing CobolScriptééééé.éééééé.ééééé.ééé 4

Chapter 2 Getting Started with CobolScript®.é..ééé.ééééé.éééé 9
 Creating and Editing CobolScript Programsééééééééé...é... 9
 Running CobolScript from the Command Line..éééé.é.éééé. 10
 Running CobolScript in Interactive Mode..ééé.ééé.éé.ééé 14
 Running CobolScript from a Web Server and Browser.éééé.ééé 17

Chapter 3 CobolScript® Language Constructséé..ééééééé..ééé. 21
 Literals and Literal Keywords..éé.éééé.ééééé.é.ééé. 21
 Variablesééééééééé...ééééé.ééééé.é.ééé. 24
 Data and Copybook Fileséééééééééééééééé.éé 31
 Expressions and Conditionsé.é.ééééé.ééééé.é.ééé. 34
 Commandsééééé...é...é..ééééé.ééééé.é.ééé. 39
 CobolScript Reserved Wordsé.ééééééééééééééé... 42
 Statementséééééééé.é.ééééé.ééééé.éééé. 43
 Sentencesééééééééé....ééééé.ééééé.éééé. 44
 Commentséééééé.....éé..é.ééééé.ééééé.ééé 45

Chapter 4 File Processing and I/Oééééééééééééééééé... 47
 Describing Files and Defining Data Recordséééééééééé... 48
 Opening Fileséé...ééééé.ééééé.ééééé.éééé. 48
 Closing Fileséé...ééééé.ééééé.ééééé.éééé... 48
 Reading Records From Files..éééééééééééééééé.. 49
 Overwriting a Fileéééééééééééééééééééé... 50
 Appending Records to an Existing Fileééééééééééééé 50
 Writing to a File by Updating Existing Records ééééééééé. 52
 Relative and Absolute File Positioningééééééééééééé 53
 Relational Database Interaction with CobolScript Standard Editionéé 55

Chapter 5 Building Web Based Systemsééééééééééééééé... 63
 Interacting with a Web Server and Web Browserééééé.éééé. 64
 Creating Virtual HTMLééééééééééééééééééé 65
 Creating an HTML Forméééééééééééééééééé. 66
 Capturing Input Data from a Web Pageééééééééééééé 66
 DISPLAY and DISPLAYLFééééééééééééééééé 68
 Retrieving Web Pages....ééééé.ééééé.ééééé.ééé 69

Chapter 6 Network and Internet Programming Using CobolScript®é.éé.é 71
 Transferring Files using FTPé...ééééééééééééééé.. 71
 Using Email Commandsééééééééééé..ééééééé.. 73
 Using TCP/IP Commandséééééééééééééééééé 75

Chapter 7 Advanced Internet Programming Techniques Using CobolScript®.. 83

 Environment Variables..ééé.ééééé.ééééé.ééééé 84
 CGI Form Componentsééééé..ééééééééééééé. 86
 Using Hidden Fieldséééééééééééééééééééé.. 90
 Sending Email from CobolScript Using CGI Form Input...ééééé.. 92
 Using CobolScript to Transmit Fileséé..ééééééééééé.... 93
 Embedding JavaScript in CobolScript Programsé.ééééé.ééé. 95

Chapter 8 Programming Techniques and Advanced CobolScript® Featuresé. 99
 Designing a Modular Program..é.ééééé.ééééé.éééé. 99
 Manipulating CobolScript Variableséééééééééééééé. 101
 Advanced CobolScript Features...é...ééééé.ééééé.ééé 102

Chapter 9 CS Professional CodeBrowserÊ, AppMakerÊ, and Control Panel... 109
 Feature Requirements..é.éééééééé.ééééé.éééé. 109
 Using CodeBrowseréééééééééééééééééééé. 109
 Building Executables with AppMaker.ééééé.ééééé.ééé 112
 Using the CobolScript Control Panel..ééééé.ééééé.ééé 113

Appendixes

Appendix A Language Referenceééééé.ééééé.ééééé.éééé 117
Appendix B Function Referenceééééé.ééééé.ééééé.éééé.. 159
Appendix C CobolScript® Constraintsééééé.é..ééé.ééééé.éé... 175
Appendix D Sample CobolScript® Programséééééé...ééé.ééééé. 177
Appendix E CobolScript® Picture Clauseséé.é.é.ééééé.ééééé.é 181
Appendix F CobolScript® Basic Program Structureéééééé.ééééé... 187
Appendix G Setting Up ODBC and ODBC Data Sources for LinkMakerÊéé.. 195
Appendix H Using LinkMakerÊ Embedded SQL in CobolScript® Professional.. 223
Appendix I CobolScript® Error Messages..éééé.ééééé.ééééé.é 231

Glossaryéééé.ééééé.ééééé.ééééé.ééééé.ééééé.éé... 259
Indexééééé.ééééé.ééééé.ééééé.ééééé.ééééé.ééé 265

 CobolScript® Developerôs Guide Page 1

Introduction to CobolScriptÈ /

Installation Instructions

obolScript® is a powerful, easy to use, platform independent, internet-friendly programming
language. With it, you will be able to quickly develop and test web-based systems, interface
programs, and compact business applications. The natural syntax of CobolScript will help
you to start programming productively in a short amount of time, provided youõve had at

least some exposure to other programming languages. This natural syntax, coupled with a variety of
network and internet-specific commands, makes CobolScript a great alternative to more cryptic or
complicated network programming languages. If youõre an experienced internet developer, we think
youõll find that certain web programming tasks that used to be difficult with your old language will be
simple with CobolScript, and as a side benefit, your code will be more manageable and easier to
maintain. If youõve avoided web programming in the past because of its apparent complexity,
CobolScript can open the door to a whole new style of application development for you, and can do
it with a relatively small effort.

CobolScript is available for Microsoft Windows®, SunOS®, FreeBSD®, and Linux®. Any program
developed and tested on one platform can be almost seamlessly ported to another supported
platform. And like all web systems, CobolScript web apps can be executed from any machine that
has a compatible browser and can access the web that is running CobolScript. For this reason, a well
coded, web-based CobolScript system will not require modification if client machines are changed or
upgraded, so long as the clients still have compatible browsers installed ð a welcome change for
anyone who has had to modify applications with client front-ends specific to their operating system.

Alternatively, a single web client can run different CobolScript applications that reside on separate
servers. By linking small applications that are located on distinct servers to one another, you can
create a complete web system, and the processing for this single, larger system will be spread across
the servers. Figure 1.1 illustrates one possible architecture for such a system.

Chapter

1

C
I C O N K E Y

Ā Important point

Page 2 CobolScript® Developerôs Guide

CobolScript Features

In addition to the standard language commands and the internet processing commands available in
CobolScript, other features provide the means to quickly and easily create programs with a wide
range of functionality:

¶ Internetworking commands such as FTPPUT, FTPGET, SENDMAIL, and GETMAIL for
transferring files and emails from within a CobolScript program.

¶ File processing commands for reading and parsing both fixed-format and delimited data
files.

¶ Flexible naming syntax that allows underscores (_) and dashes (-) to be used
interchangeably in variable names, to support both modern variable naming as well as
COBOL-style variable naming.

¶ Advanced expression evaluator that does not require explicit spaces between expression
components, even for subtraction operations, for programmers who are used to coding
mathematical expressions in C or similar languages.

¶ Financial functions for calculating annuities and depreciation.

¶ Scientific, stochastic, and other higher math functions.

¶ Metric to English and English to metric system unit conversion functions.

¶ TCP/IP socket programming commands such as SENDSOCKET and
RECEIVESOCKET, for creating client-server communications programs without web
server software or FTP configuration.

¶ DNS commands such as GETHOSTNAME for incorporating internet information
retrieval into programs.

¶ PIC X(n) picture clause that automatically calculates variable size based on VALUE clause,
eliminating the need for time-consuming computations with FILLER variables, and an
implied version of PIC X(n) that allows the FILLER keyword and picture clause to be
eliminated entirely.

¶ REPLICA variable declaration syntax that permits the same elementary data item to be used
in multiple group items.

 Figure 1.1 ð A multi-server CobolScript application

Linux SunOS FreeBSDNT

Web
Brow ser

\httpd\cgi-bin\

cobolscript.exe

/httpd/cgi-bin/

cobolscript.exe

/httpd/cgi-bin/

cobolscript.exe

/httpd/cgi-bin/

cobolscript.exe

 CobolScript® Developerôs Guide Page 3

¶ EXECUTE command for dynamic statement creation and execution.

¶ Intelligent error messaging that displays browser-based error messages when running
programs from a browser, and text-based error messages when running programs from the
command line, thereby speeding the debugging process.

Using these CobolScript features, you can develop programs to get and save web pages to text files,
transfer files via FTP, send simple emails, retrieve emails, accept data from web page forms, create
virtual HTML documents, and perform various file input and output operations.

CobolScript Professional Edition also contains a number of enhancements that enable professional
development with CobolScript:

¶ CobolScript AppMakerÊ, which makes it possible to create executables from CobolScript
programs.

¶ CobolScript CodeBrowserÊ, a browser-based utility to examine your code in colorized form.

¶ CobolScript LinkMakerÊ, a tool that enables you to directly embed SQL calls in your
CobolScript program to access any data source for which you have an ODBC driver. On
Unix platforms, LinkMakerÊ is used in conjunction with UnixODBC, a freeware product.

¶ The CobolScript Control Panel, a graphical administration tool accessible from your web
server machine (so long as both CobolScript and web server software are installed), for
accessing other CS Professional features, and for administering your CS Professional system.

¶ Multidimensional array support.

About this Manual

This developerõs guide should serve as both a guide for learning to program with CobolScript, and as
a reference for your day-to-day programming. It should provide sufficient instruction for most
experienced programmers to learn to develop CobolScript applications; however, in certain instances
you may wish to find additional information:

¶ If you are completely new to the art of programming, you should probably familiarize
yourself with introductory programming principles as well. Understanding the basics of
programming will reduce the time it takes you to learn CobolScript.

¶ If you choose to program web applications using CobolScript, you should be familiar with
HTML. HTML is relatively easy to learn, and many good web sites and books exist on the
topic, so it would be redundant to include an HTML reference in this guide. A number of
ôWYSIWYGõ (What You See Is What You Get) software tools are also freely available and
can assist you in prototyping your system and creating the HTML that will be displayed by
your programs. Check www.download.com for the latest freeware and shareware
WYSIWYG tools.

¶ Although web programming is addressed in this guide, you may also choose to seek more in-
depth coverage of the subject, if, for instance, you want background information about CGI
or about concepts not in this manual, such as cookie creation using CGI scripting.

¶ If you are interested in providing more real-time user feedback than is possible with just CGI
scripting, or you want to distribute some of your web served applicationõs processing to
client machines, consider learning more about an appropriate embedded language like

http://www.download.com/

Page 4 CobolScript® Developerôs Guide

JavaScript. These languagesõ scripts can be embedded in the HTML that is displayed by your
CobolScript programs, so you can provide real-time, client-based processing while still using
CobolScript. Our preferred client-side scripting language is JavaScript, since it loads and
executes relatively quickly, and will run on both Netscape Navigator® and Internet
Explorer®.

If you are looking for books on any of the above topics, weõve found the Peachpit Press Visual
Quickstart Guide series to be affordable, concise, readable for beginners but not overly simplified, and
filled with good examples. Peachpit Press is on the Web at www.peachpit.com.

Installing CobolScript

System Requirements

A Pentium®-compatible machine (166 MHz and higher preferred) is required for the Windows®,
Linux®, and FreeBSD® versions of CobolScript, a RISC-processor machine for the SunOS® version.
32MB of RAM is recommended for CobolScript Standard, more for programs of substantial size.
64MB of RAM is recommended for CobolScript Professional Edition.

Installing CobolScript on a Windows®-compatible machine

Step 1. Download CobolScript.

Create a directory such as C:\ DESKWARE or C:\ COBOLSCRIPT where you will keep
CobolScript and your CobolScript programs. Download the file(s) to that directory from the
Deskware Registered User Web Site. If you have downloaded a zip file (with the extension .zip),
unzip it using WinZip or a similar product. The cobolscript.exe file is the CobolScript interpreter,
and the .cbl files are the sample CobolScript programs. As you have already discovered because you
are reading this, this manual is the file cbmanual.pdf, and requires that you have a free copy of Adobe
Acrobat Reader®, version 4.0 or higher, installed on your computer to read and print it.

Step 2. Install CobolScript.

No special configuration is required for CobolScript to run. However, we recommend that you
modify your PATH environment variable in your AUTOEXEC.BAT file to point to the location of
the CobolScript engine. To do this, first save a copy of your old C:\ AUTOEXEC.BAT file to a
backup file such as C:\ AUTOEXEC.BAK, then open AUTOEXEC.BAT in a text editor such as
notepad, and modify the SET PATH= line. For example, if a line in your AUTOEXEC.BAT file
reads:

SET PATH=C:\ MOUSE;%PATH%;C:\ PP\ BIN\ WIN32

you would change it to:

SET PATH=C:\ MOUSE;%PATH%;C:\ PP\ BIN\ WIN32;C: \ DESKWARE

if you have saved the CobolScript engine to the C:\ DESKWARE directory.

http://www.peachpit.com/

 CobolScript® Developerôs Guide Page 5

Step 3. Run CobolScript.

CobolScript can be run from the command line. Start an MS-DOS prompt, and type:

cobolscript.exe

to run CobolScript and see the command line options. To run a specific program from the
command line, type:

cobolscript.exe <program - name>

where <program-name> is the name of the program you wish to run, along with a path if the
program is not in the current directory. For example:

cobolscript.exe test.cbl

cobolscript.exe .. \ testdir \ test.cbl

For more information on running CobolScript from the command line, turn to the next chapter,
Getting Started with CobolScript.

If you plan to do Web and CGI development, you will probably want to put CobolScript in your
web serverõs CGI directory. Usually this directory has òcgió or òcgi-binó in the name, as in
c:\ httpd\ cgi-bin for the OmniHTTPd web server. Just place the cobolscript.exe file in this
directory. See the section titled Running CobolScript from a Web Server and Browser in
Chapter 2, Getting Started with CobolScript.

If you donõt already have a web server, OmniHTTPd is a freeware development-quality web server for
Windows 95/98/NT®. Search the web for òOmniHTTPdó to find a copy.

Step 4. Configure ODBC on your computer.

If you have CobolScript Professional Edition and you want to access a database using LinkMakerÊ,
you will need to set up an ODBC data source on your computer. Refer to Appendix H for complete
instructions on how to do this.

Installing CobolScript on a Linux®, SunOS®/Solaris®, or FreeBSD® machine

Step 1. Download CobolScript.

Create a directory such as /deskware or /cobolscript where you will keep CobolScript and your
CobolScript programs. Download the file(s) to that directory from the Deskware Registered User
Web Site. If you have downloaded the complete file, un-tar it with the appropriate command
(depending on your OS). Below are some un-tarring examples:

tar - xv f linuxcob.tar

tar - xvf suncob.tar

tar - xvf bsdcob.tar

Similar steps should be followed with other tar files; just use the same syntax as above and substitute
the appropriate filename. The cobolscript.exe file is the CobolScript interpreter, and the .cbl files are
the sample CobolScript programs. As you have already discovered because you are reading this, this

Ā

Page 6 CobolScript® Developerôs Guide

manual is the file cbmanual.pdf, and requires that you have a free copy of Adobe Acrobat Reader®
4.0 or higher installed on your computer to read and print it. Because there is not a version of
Adobe Acrobat Reader® available for FreeBSD, if you have purchased this version of CobolScript
you will have to print the manual from an Acrobat®-compatible OS (Windows®, Linux®, IRIX®, HP-
UX®, AIX®, Solaris®, Macintosh®, etc.).

Step 2. Install CobolScript.

No special configuration is required for CobolScript to run. However, we recommend that you
modify your PATH environment variable to point to the location of the CobolScript engine. To do
this permanently (preferred), you can modify the appropriate line of your .profile file in your home
directory. For example, if a line in your .profile file reads:

PATH=/bin:/sbin

you should change it to:

PATH=/bin:/sbin:/deskware

in the case where CobolScript is in the /deskware directory. If you are going to run CobolScript
from your current directory only, make certain that "./" is also a component of the PATH variable.

To modify your PATH environment variable for the current session only, first type:

echo $PATH

at the command prompt to see the current value of your PATH environment variable. Next, on
Linux® or Sun® machines, at the command prompt type:

PATH=$PATH:/deskware

where /deskware is the path to the CobolScript interpreter. In FreeBSD, you should instead type:

setenv PATH oldpath:/deskware

or alternatively:

set path=oldpath:/deskware

where oldpath is the original value of the PATH variable, and /deskware is the path to the CobolScript
interpreter. Your path will be changed for the current session.

Step 3. Run CobolScript.

CobolScript can be run from the command line. Bring up an xterm or command prompt, and type:

cobolscript.exe

 to run CobolScript and see the command line options. To run a specific program from the
command line, type:

cobolscript.exe < program - name>

 CobolScript® Developerôs Guide Page 7

where <program-name> is the name of the program you wish to run, along with a path if the
program is not in the current directory. For example::

cobolscript.exe test.cbl

cobolscript.exe ../testdir/test.cbl

For more information on running CobolScript from the command line, turn to the next chapter,
Getting Started with CobolScript.

If you plan to do Web and CGI development using CobolScript, you will probably want to put
CobolScript in your web serverõs CGI directory. Usually this directory has òcgió or òcgi-binó in the
name, as in /home/httpd/cgi-bin on Apache. Just place the cobolscript.exe file in this directory.

If you are doing CGI development and intend to read and write to files in your cgi-bin directory,
make certain that the permissions on these files (and on the cgi-bin directory, and its parent
directories) are correctly set. Use the chmod command at the command prompt to properly set file
permissions. If this is not done, you will encounter difficulties when running scripts from a web
browser, since these scripts generally run as user 'nobody', who does not have the same authority as
you do when you are logged in at a command prompt, creating these files.

Step 4. Set up ODBC on your computer.

If you have CobolScript Professional Edition and you want to access a database using LinkMaker,
you will need to set up an ODBC data source on your computer. Refer to Appendix H for
instructions on how to set up UnixODBC (a freeware product from UnixODBC.org) so that you
can connect directly to your data source.

Ā

Page 8 CobolScript® Developerôs Guide

 CobolScript® Developerôs Guide Page 9

Getting Started with CobolScriptÈ

efore you dive headfirst into CobolScript programming, you will need to learn the basics,
like how to edit your CobolScript programs, how to run them, and how to debug them.
This chapter aims to answer the basic logistical questions of CobolScript coding that you
may have, as well as providing a background on CobolScript interactive mode, which contains

some useful debugging tools. With the information here, youõll be ready to learn the CobolScript
language.

Just as a note, all of the screens shown in this chapter, with the exceptions of the Windows®-specific
information in Figures 2.1 and 2.2, are representative of any CobolScript platform; donõt worry about
whether the figure shows an MS-DOS screen or a Unix screen, because the syntax and output of the
illustration would be the same no matter what the platform.

Creating and Editing CobolScript Programs

Use a standard text editor to create and edit your CobolScript programs. In Windows®, editors such
as Notepad or Wordpad work well. If you use Wordpad, make certain you save your files as text

documents, and specify the extension when naming your program, as in Figure 2.1, or Wordpad will
save the file with a default extension of .txt. Also, in Wordpad youõll find it easiest if you choose a

Chapter

2
B

I C O N K E Y

Ā Important point

Figure 2.1 ð Saving a CobolScript program in the Microsoft® Wordpad Save As dialog box.

Page 10 CobolScript® Developerôs Guide

fixed-width font for your editing such as Courier New. This will allow you to later open your
programs in Notepad, MS-DOS EDIT, or in Unix without a loss of formatting. You will probably
find yourself using the aforementioned MS-DOS EDIT text editor (accessible by typing the word
edit at the DOS prompt) when debugging, because despite its old-fashioned appearance, it tracks the
current column and row positions of the cursor, which can allow you to quickly locate a program line
number. Figure 2.2 shows an EDIT screen, with the cursor positioned down and to the right of
center; the resulting Line and Column position values appear in the lower right corner of the screen.

If you choose to edit your programs in Unix, any editor that saves documents as plain ASCII text will
suffice. Like MS-DOS EDIT, vi is a useful editor because it provides the means to quickly navigate
to a particular line number. Teaching vi is beyond the scope of this manual, however, so refer to a
Unix or vi-specific reference for more information.

If you are using CobolScript Professional Edition, you will probably find CobolScript CodeBrowserÊ
to be a useful tool for printing and examining your programs; CodeBrowserÊ is discussed in detail in
chapter 9.

Running CobolScript from the Command Line

The simplest way to use CobolScript is by running a CobolScript program in command line mode.
To do this, type:

cobolscript.exe <program - name>

at the command prompt, where <program-name> is the name of the program you wish to run
(donõt literally enclose the program name in < >; we use this syntax to indicate that program-name is
an argument to the CobolScript executable, cobolscript.exe). This command assumes that you have
already included your CobolScript directory in your PATH environment variable, or alternatively,
that you are executing the command from within the CobolScript directory. If you need instructions

Figure 2.2 ð The MS-DOS EDIT text editor, showing the current cursor position (Line and Column) in the
 lower right corner.

 CobolScript® Developerôs Guide Page 11

on how to include your CobolScript directory in your PATH variable, refer to the Installing
CobolScript section of Chapter 1, Introduction to CobolScript / Installation Instructions.

If youõre using the Windows® version of CobolScript (rather than a Unix version), running from
command line mode means that you are running your CobolScript programs in an MS-DOS session.
However, it is important to note that although your CobolScript applications can be run from the
DOS prompt, CobolScript is not a DOS application; it is a native 32-bit application that excludes
Windows-specific graphical components in order to minimize the CobolScript engineõs footprint and
to provide cross-platform capability. Graphical development with CobolScript is achieved through
the use of a web server and browser-based applications, discussed in more detail in Chapters 6 and 8.
See the section titled Running CobolScript from a Web Server and Browser later in the chapter
for more information on getting started in a web-based environment.

Running CobolScript from Windows® command-line mode, you can drop the extensions if you like,
and just type:

cobolscript <program - name>

Command line program execution will direct all output to the current command line window, and

therefore all output will be plain text. Several of the example programs contained with CobolScript
are designed to run in command line mode; figure 2.3 shows the output of the ARITHMETIC.CBL
example program in an MS-DOS prompt window.

CobolScript also comes with a number of command line options. If you arenõt already familiar with the
term, a command line option is a switch that you set at the time that you call an executable program,
which in this case is the CobolScript executable. These switches allow you to change some specifics
in the way that CobolScript runs, at the time you run it. If you type cobolscript.exe at the
command line prompt, without any program arguments specified, you will see a list of the
CobolScript command line options.

 Figure 2.3 ð Executing CobolScript programs from the command line prompt.

Page 12 CobolScript® Developerôs Guide

Figure 2.4 illustrates this in an MS-DOS window (on other platforms, you would need to specify the
.exe extension to the CobolScript executable). The syntax of the CobolScript Standard Edition
command line options is as follows:

cobolscript.exe [- i| - l] <program - name> [- t| - dd| - ds]

¶ The -i option runs the interpreter in interactive mode; see below for more information on
running in interactive mode. When the -i option is used, if a program-name is not specified,
interactive mode will be entered with nothing in the program buffer. If program-name is
specified, interactive mode will be entered, and program-name will be loaded into the program
buffer.

¶ The -l option runs <program-name> and creates a listing of the program execution as a
separate log file with the name program-name.log. For example, if your program name is
test.cbl, and you type the following at the command prompt:

 cobolscript.exe ïl test.cbl

then a log file named test.log will be created in the working directory.

¶ The -t, -dd, and -ds options are options that come after the program name:

Ý The -t option causes CobolScript to truncate (and ignore) all characters beyond the 72nd
column position when parsing the program; this mimics the way mainframe COBOL
works. Your program file is not affected, just the execution of the program. The default
(no ðt specified) is for all characters in the program to be treated as code.

Ý The -dd option causes CobolScript to recognize the double quote character (ò) as the
string delimiter instead of the default, the accent symbol (`). To display a literal double
quote when using this option, your program must use the keyword DOUBLEQUOTE.
The -dd and -ds options are mutually exclusive.

Ý The -ds option causes CobolScript to recognize the single quote character (ô) as the
string delimiter instead of the default, the accent symbol (`). To display a literal single

 Figure 2.4 ð CobolScript Professional command line options.

 CobolScript® Developerôs Guide Page 13

quote when using this option, your program must use the keyword SINGLEQUOTE.
The -dd and -ds options are mutually exclusive.

CobolScript Professional Edition also provides a utility to build executables from the command line,
CobolScript AppMakerÊ. The syntax for creating an executable using AppMaker is:

cobolscript.exe - b <program - name>

If your program successfully loads, an executable will be created from it and placed in the working
directory. For example, typing the following will create an executable named test.exe in the working
directory:

cobolscript.exe - b test.cbl

CobolScript Error Messages in Command Line Mode

It will be normal for you to encounter bugs in your code while you are testing your CobolScript
programs. In command line mode, error messages display directly to the screen in a text-based
format. The error messages are quite specific, and will usually help you pinpoint the source of the
problem with your code.

Multiple error messages are displayed when a single line of code causes multiple errors in the
CobolScript engine; in these cases, one of these multiple errors should be obviously more specific
than the others, and will better assist you in determining the problem than the more general
messages. Multiple error messages, however, never indicate that there are unrelated errors on
different lines of the program. This is because CobolScript is an interpreted language, and program
execution is halted as soon as a single error is encountered. For this reason, you must re-run your
program after correcting each error to determine if there are other errors in your code.

Page 14 CobolScript® Developerôs Guide

All error messages have an associated CobolScript Error Number, which displays along with the
error message when the error is encountered; all error messages are explained in detail in Appendix

F, CobolScript Error Messages, in order of this CobolScript Error Number.

After the last error message is displayed for a particular error, the text of the line that caused the error
is displayed, along with some line number information. The Source Line Number is the actual number
of the line in the program text file that caused the error. Use this line number to navigate to the line
of faulty code in your program with a text editor like MS-DOS EDIT or vi. The Internal Line Number
indicates the number assigned to the Instruction Pointer (IP) at the time of the error. This number
can be used when a program is run in interactive mode to determine the problem line, in conjunction
with the list and ip interactive mode commands. Finally, the Source Line is the text of the line that
caused the error. Figure 2.5 shows an example of a command line error and the resulting error
messages.

Running CobolScript in Interactive Mode

From CobolScript interactive mode, you can load a program, execute it, step through and animate its
execution, and examine the contents of your programõs variables as they are populated. These
features make interactive mode a great debugging tool. Interactive mode can be accessed by using
the -i command line option when running CobolScript from the command prompt. Refer to the
explanation of the CobolScript command line options above for the appropriate command line
syntax. Figure 2.6 shows the start of a CobolScript interactive mode session on SunOS; interactive
mode on other supported platforms is essentially the same.

Once youõve started an interactive mode session, youõll see the CobolScript interactive mode prompt
that looks like this:

cobolscript>

Figure 2.5 ð CobolScript command line error message.

 CobolScript® Developerôs Guide Page 15

From this prompt, you can use all of the interactive mode commands, although some commands

will not work properly until a program has been loaded, and others will not work correctly until a
program has been run. To see a help screen-style list of these commands, type a question mark (?) at
the command prompt. Figure 2.7 shows a representation of this list of commands.

Interactive Mode Commands

The following list defines the interactive mode commands. Online command-specific help is also
available in interactive mode by typing help <command>.

Figure 2.6 - Interactive Mode in SunOS®

+--- +

| CobolScript 2.01 Copyright (c) 1996 - 2000 Deskware, Inc. |

+--- +

| COMMANDS: |

| |

| ? dump modules positions |

| ! <system command> dump positions q |

| animate <speed> dump variables run |

| break <linenumber> files save <filename> |

| clear help <command> stack |

| count ip stepoff |

| deskware list stepon |

| display <variable> load <filename> variables |

| dump listing modules ver |

| |

| |

+--- +

 Figure 2.7 ð Interactive Mode Help Screen example

Page 16 CobolScript® Developerôs Guide

Interactive Mode
Command

 Description

? Displays all of the commands available in interactive mode.

! `system command ̀ Runs a system command on your machine. The system command must be
an operating system command in the appropriate syntax for your operating
system. Examples:

! dir

! `dir | more`

! `ls ïal`

! `chmod 777 test.cbl̀

animate <speed> Executes the code that is in the program buffer line by line, and displays
each line of code as it is executed. The speed parameter controls the speed
of the code interpreting and displaying process: the higher the number, the
slower the lines of code will be displayed.

break <linenumber> Sets a break point to halt program execution.
The break command has the following forms:

¶ break with no argument specified lists all current break points;

¶ break <linenumber> sets a break point in a programõs execution
at linenumber;

¶ break clear <linenumber> clears the existing break point at
linenumber;

¶ break clear all removes all existing break points.

clear Removes the contents of the current program buffer. After the clear
command is used, another program can be loaded into the buffer.

count Displays the number of lines of code in the program currently loaded in
the program buffer.

deskware Displays Deskware, Inc. contact information.

display <variable> Displays the contents of the specified variable. The display command can
be used after run, animate <speed>, or stepon has been used to execute
a loaded program.

dump variables
dump modules
dump positions
dump listing

Creates a text file dump of all variable contents, a module list, a program
listing, or a variable position listing, depending on the argument. Below are
the names of the files that are created by each command:

¶ dump variables - dump.var

¶ dump modules - dump.mod

¶ dump positions - dump.pos

¶ dump listing - dump.lst

 CobolScript® Developerôs Guide Page 17

Interactive Mode
Command

 Description

files Displays all of the files that a program used as it was executed. The files
command can be used after run, animate <speed>, or stepon has been
used to execute a loaded program.

help <command> Displays command-specific help.

ip

Displays the current value of the CobolScript internal instruction pointer.
This value is equivalent to the internal line number of the line that was just
processed.

list Displays the contents of the program buffer to the screen. The program
buffer contains the lines of program code that were loaded with the load
<filename> command.

load <filename> Loads the contents of the specified program file filename into the program
buffer. Once loaded, a program file can be executed by using the run or
animate <speed> command.

modules Displays all of the modules defined in the code that has been loaded into
the program buffer.

positions Displays all variablesõ byte offsets. The positions command can be used
after a program has been executed using run or animate <speed>.

q Quits interactive mode.

run Executes code that has been loaded into the program buffer.

save <filename> Saves the current contents of the program buffer to a text file filename.

stack Displays the code lines that are currently on the CobolScript internal stack.

stepoff Turns off step mode that was set using the stepon command. After step
mode has been turned off, the run command will run programs normally,
without stepping.

stepon Places CobolScript in step mode. Once in step mode, the run command
will begin interactive execution of the loaded program. Interactive
execution means that the program is executed, one line at a time, by
pressing the ENTER key. As the program is interactively executed,
commands such as variables, files, ip, and stack can be used to display
current information.

variables Displays all of the variables used by a program, and the contents of those
variables. The variables command can be used after run, animate
<speed>, or stepon has been used to execute all or a portion of a loaded
program.

Page 18 CobolScript® Developerôs Guide

Interactive Mode
Command

 Description

ver Displays version information for your CobolScript installation.

Running CobolScript from a Web Server and Browser

With proper installation and web server configuration, CobolScript programs residing in the
appropriate web server directory can be initiated by (and the output displayed in) a web browser. By
placing your CobolScript programs on a server and accessing them with a browser, you can create
graphical, efficient applications accessible from any computer with browser software installed on it,
so long as the browsing computer has visibility to the web server computer, either across a network
or the internet.

For your CobolScript web applications to run correctly, you should perform the following steps:

1. Place your programs, any text files used by your programs, and the CobolScript executable in
your web serverõs cgi-bin directory. Consult your web server documentation if you do not know
where the cgi-bin directory is, or you want to modify its location.

2. On Unix servers, use the chmod command to change the permissions on the files that you
placed in the cgi-bin directory, as necessary. Since CGI scripts usually run as user ônobodyõ, the
permissions on these files generally must be set to allow any user to have the appropriate access
to all files used by your programs. As an example, suppose a CobolScript web program reads
from and writes data to a file named DATA.TXT. The file DATA.TXT must then permit both
reading and writing by any user, in order for the program to run successfully. In this case, typing

chmod 666 DATA.TXT

at the Unix command prompt will change DATA.TXT appropriately.

3. Make certain CGI scripting is turned on and permitted by your web server software; this is
necessary for CobolScript applications to run correctly. Consult your web server documentation
for information on how to enable CGI scripting if it is not already enabled.

 CobolScript® Developerôs Guide Page 19

4. After you have placed CobolScript and your CobolScript programs in your cgi-bin directory, you
can execute the programs on the server with your browser by placing a ò?ó between the
cobolscript.exe and the programõs filename in the browser URL. Figure 2.8 illustrates the
execution of a sample timesheet program initiated from a Netscape® browser, but running on a
FreeBSD® server with Apache web server software; note the address in the Location: (URL)
box, that runs the program uts.cbl in the cgi-bin directory with the syntax
òcobolscript.exe?uts.cbló.

To generalize, any CobolScript program that has been placed, along with the CobolScript executable,
in the appropriate directory on your web serverõs computer can be executed by using a URL of the
following form:

http://<your ip address>/cgi-bin/cobolscript.exe?<program name>

You can see several more example of this on the Deskware samples web site at
http://www.cobolscript.com/cgi-bin/cobolscript.exe?samples.cbl.

Figure 2.8 ð CobolScript Web Application (Timesheet Program) Example

http://www.cobolscript.com/cgi-bin/cobol.exe?samples.cbl

Page 20 CobolScript® Developerôs Guide

CobolScript Error Messages in Web Browser Mode

Besides the standard command line error messaging system explained in the Running CobolScript
from the Command Line section in this chapter, CobolScript provides an integrated web-based
error messaging system. This messaging system is unique in that CobolScript determines whether
you are running a program from a web browser or the command line, and controls the display of the

error message accordingly. If you run a CobolScript program from you web browser and encounter
an error, you will see the CobolScript Error Number and error message displayed in a consistent
HTML-based format; if you run the same program from the command line and encounter the same
error, the number and messages will display in a text-based format.

The web based error message in figure 2.9 illustrates this HTML-based error messaging system. In
this particular example, a variable was misspelled in the GETENV statement, and was therefore
undefined and caused an error.

In certain cases when running CobolScript programs from a browser, you will see a completely blank
browser window, or an incomplete display of your HTML without a CobolScript error on the page.
These cases can indicate errors in your HTML code as well as a CobolScript error. Check the page
source from your browser to find any CobolScript error messages that are embedded in the HTML
but did not successfully display. Correct the CobolScript error(s) first; if the page still fails to display
properly, but there are no longer any CobolScript error messages in the page source, check your
HTML syntax.

Ā

 Figure 2.9 ð Browser-based error message

 CobolScript® Developerôs Guide Page 21

Page 22 CobolScript® Developerôs Guide

CobolScriptÈ Language Constructs

n CobolScript, there are several categories of constructs which form the foundation of the
language. This chapter defines these constructs and their specific CobolScript syntax. Since
CobolScript language constructs are not so different from the elementary components that
comprise most other computer languages, you may opt to focus your attention only on those

sections in this chapter that deal with material unfamiliar to you. Each CobolScript construct is
unique in at least a minor fashion, however, so refer back to the appropriate section here if you are
having difficulties with a particular construct.

With the exception of delimited string literals, all CobolScript alphanumeric syntax is case insensitive,
meaning uppercase letters, lowercase letters, and any combination of these will work for any
particular command, variable, or reserved word. This flexibility requires that you be cautious,
however, when defining your variables; see the Variables section for more information.

The CobolScript language constructs are divided into the following categories:

¶ Literals and Literal Keywords

¶ Variables

¶ Data and Copybook Files

¶ Expressions and Conditions

¶ Commands

¶ Reserved Words

¶ Statements

¶ Sentences

¶ Comments

We explain each of these categories individually in the following sections.

Literals and Literal Keywords

Literals are any numbers or character strings which are meant to be taken literally by your program.
Literals are perhaps best defined by what they arenõt: A literal is not a variable, which has values
substituted in for the variable name at the time the program is run, nor is a literal necessarily an
expression, which is mathematically evaluated to arrive at a resulting value (although literals can
comprise expressions). As you will see from the examples below, literals can only appear in places

Chapter

3
I I C O N K E Y

Ā Important point

 CobolScript® Developerôs Guide Page 23

within statements or variable definitions where they are used as a source for information, and never
as a target, since a literal cannot change its value.

Numeric Literals

If a literal is numeric, and you want that numeric literal to be treated as a number by your program, it
should not be enclosed in any offsetting quotes or string delimiters. Also, a numeric literal should
not include any special formatting characters like commas or dollar signs; the only special characters
allowed within a numeric literal are the negative sign (-) and the decimal point, indicated with a
standard period (.). To use a numeric literal in your program, just insert the number, including any
negative sign and decimal point, into your statement or VALUE clause in the appropriate position.

If you use a numeric literal in a VALUE clause, the variable being defined must also be numeric.
Here are some examples of numeric literals in VALUE clauses in variable definitions:

1 variable_1 PIC $9,999.99 VALUE 2323.41.

1 variable_2 PIC S99,999.999 VALUE ï3200 0.

If you have questions about the PIC clauses in the above variable definitions, picture clauses are
explained completely in Appendix E, CobolScript Picture Clauses.

Here are some examples of numeric literals in code statements:

MOVE 5 TO variable_1.

SUBTRACT 6.23 FROM number_var_1.

MULTIPLY 2 BY ï6 GIVING result_var.

COMPUTE result_var = - 2.25.

Alphanumeric Literals

Alphanumeric literals, also known as strings, are any delimited character or string of characters which
is to be taken literally by your program. Any character other than the string delimiting character,
which is normally the accent symbol, can appear within a delimited string. See the subsection below
for more information on string delimiters.

If you use an alphanumeric literal in a VALUE clause, the variable being defined must be of
alphanumeric (PIC X) type. Here are some examples of alphanumeric literals in VALUE clauses in
variable definitions:

1 variable_2 PIC XXX VALUE `123`.

1 FILLER PIC X(n) VALUE `<BODY><HR>
ò#1ò Web Page</BODY>`.

If you want further explanation of the types of PIC clauses used in the above variable definitions,
refer to Appendix E, CobolScript Picture Clauses.

Here are some examples of alphanumeric literals used in procedure statements:

MOVE `Y` TO variable_1.

IF condition_val = `E1qwT`

 CONTINUE

END- IF.

Page 24 CobolScript® Developerôs Guide

DISPLAY `Hello, óRayô. `.

The CobolScript String Delimiter

The string delimiter in any language is the character that is used to signal the beginning and the end
of alphanumeric literals. In most computer languages, the string delimiter is either the single or
double quote, so strings enclosed in their delimiters are commonly referred to as being quoted. In
CobolScript, however, the default string delimiter is the Gravè accent, or just plain accent (`). Since
CobolScript also has command line options to permit the use of the single or double quote as the
string delimiter (see the section titled Running CobolScript from the Command Line in Chapter
2, Getting Started with CobolScript for more details), we usually refer to alphanumeric literals simply as
being delimited to avoid confusion.

The accent key is the key located in the upper left corner of North American keyboards, below the
Esc key. Normally, both the tilde (~) and the accent (`) are on the same key. We selected the
accent as the default string delimiter for CobolScript because HTML, which must be displayed from
CobolScript web applications, requires the frequent use of double and single quotes; using a different
character for the CobolScript string delimiter simplifies the creation of these strings. The
alphanumeric literal in the following MOVE statement is standard HTML and illustrates this point
well:

MOVE `Test Page` TO url_var.

If you still prefer to use quotes, however, you can. Just create your program using either single or
double quotes as the string delimiters, and run the program using the appropriate command line
option. See the previously mentioned section in Chapter 2 for syntax information.

If youõre an experienced C programmer, you may be curious about whether the backslash (\) has
special meaning inside a CobolScript string. It doesnõt. This is primarily because CobolScript strings
must contain any client-side scripts that you choose to embed in your CobolScript-generated HTML.
These scripting languages each may attribute special meaning to certain characters inside a string, and
these special characters should not interfere with the original CobolScript string. Simply put, there is
no ôescapeõ character, backslash or other, in CobolScript that will cause the character following it to
be interpreted literally. Because of this, there is no direct way to display the current delimiter symbol
from within a delimited string ð a special keyword, not enclosed in delimiters, must be used instead.

To display a literal of the accent symbol from within a CobolScript program that uses the accent as
the string delimiter, you must use the ACCENT keyword, as in:

DISPLAY ACCENT.

DISPLAY `The accent symbol: (` & ACCENT & `).`

The same rule applies if you are using double or single quotes as the string delimiter. When the
double quote is your string delimiter, use the DOUBLEQUOTE keyword to display the symbol, as
in:

DISPLAY DOUBLEQUOTE.

and when using the single quote as the string delimiter, use the SINGLEQUOTE keyword, as in:

DISPLAY SINGLEQUOTE.

 CobolScript® Developerôs Guide Page 25

Literal Keywords

Below is the complete list of literal keywords. Like ACCENT, DOUBLEQUOTE, and
SINGLEQUOTE, each of these keywords represents a specific ASCII character constant.

Keyword Symbol represented by
keyword

ACCENT `

CARRIGERETURN {equivalent of ASCII character
number 13}

CRLF {equivalent of ASCII character
number 13 + ASCII character

10; uses two bytes}

DOUBLEQUOTE "

LINEFEED {equivalent of ASCII character
number 10}

SINGLEQUOTE '

SPACE {all blanks}

SPACES {all blanks}

TAB {equivalent of ASCII character
number 9}

ZERO 0

ZEROS 0

Variables

Variables are information holders. In CobolScript, variables come in five basic forms, each of which
has its own characteristics and utility. These five forms are:

¶ Elementary data items, which can be either numeric or alphanumeric;

¶ Group-level data items;

¶ FILLER variables, which are really a special category of elementary data item;

¶ REPLICA variables;

¶ OCCURS clause variables.

No matter what the form, a variable must first be defined in a program, and then, as the term variable
implies, the variableõs contents can be assigned and reassigned throughout the body of a program. In
CobolScript, these value assignments are done with VALUE clauses and assignment statements.
VALUE clauses are optional components of elementary data item variable definitions that establish
an initial value for a variable; assignment statements are any procedure statements that modify a
variableõs contents.

A variable definition must follow certain rules of syntax, which are described below for each of the
variable forms. A variable definition may be placed anywhere within a CobolScript program,
meaning that variable definitions are not restricted to the Data Division as they are in COBOL.
However, you should not define the same variable more than once within a program.

Page 26 CobolScript® Developerôs Guide

In CobolScript, variable names are not case sensitive, so WS-VAR, ws-var, and Ws-Var will all be
treated internally as the same variable. For this reason, only one of these names should be defined in
a program. Similarly, two variables that have the same alphanumeric name and differ only by
underscore and dash separators within the variable name, such as WS-VAR and WS_VAR, will be
treated interchangeably by certain CobolScript commands and should not both be defined in a single
program.

The Elementary Data Item

An elementary data item (also referred to as a ôsubvariableõ or just ôelementary itemõ) is any basic
numeric or alphanumeric variable. An elementary data item cannot have subvariable components.
The syntax of a normal elementary data item variable definition is:

<level - number> <variable - name> PIC <picture - clause> [VALUE <value - literal>].

The level-number is a one- or two-digit number from 1 to 99. Think of the level number as
representing the outline position of a variable; the lower the level number, the higher the variableõs
rank in the outline, with 1 being the highest level. So long as you have defined at least one variable
with a level of 1 in your program, the variables with level numbers greater than 1 will all be
subvariables. This is best illustrated with an example:

1 text_input PIC X(40).

1 group_variable.

 2 components.

 3 component_1 P IC X(12).

 3 component_2 PIC $,999.99.

 2 val_1 PIC 99.

1 input_1 PIC X(25).

In the variable definitions above, text_input is both an elementary data item, because it doesnõt have
any subvariables beneath it, and is a level 1 variable. The variable group-variable is a group-level data
item (explained in the subsequent section), which has two subvariables, components and val_1. The
variable components is a group item itself, and has two subvariables, each of which are elementary
items. The variable val_1 is an elementary data item, as is input_1.

The variable-name of an elementary data item is the name that will be used throughout the program to
reference this particular variable.

The elementary data item variableõs type, format, and length are all determined by the value of the
picture-clause that immediately follows the PIC keyword. In CobolScript, all elementary item variables
are assigned a fixed number of bytes according to the size specified in the picture clause, so you must
allocate sufficient space for your variables when you create their picture clauses; otherwise, the
variable values will be truncated and information will be lost. A picture clause can be of two basic
types: numeric (PIC 9 format) or alphanumeric (PIC X format). The various picture clause formats,
and their meaning, are explained fully in Appendix E, CobolScript Picture Clauses.

If you want to initialize the elementary data item variable to a value at the time you define it, you can
include the VALUE keyword and follow it with a value-literal to assign to the variable. The value
literal must be of a type that matches the picture type of the variable; in other words, a variable with a
numeric picture clause must be assigned a numeric value literal, and a variable with an alphanumeric

 CobolScript® Developerôs Guide Page 27

picture clause must be assigned an alphanumeric literal. See the preceding section of this chapter for
more information on literals.

These are some example elementary item variable definitions:

1 string_variable PIC X(10) VAL UE `abcdefghij`.

1 input_var PIC XX.

1 num_variable PIC $,999.99 VALUE 679.

The Group-Level Data Item

A group-level data item (also referred to as a ôgldiõ or just ôgroup itemõ) is a hierarchical parent variable
that is made up of other variables known as subvariables or component variables. Group items are
similar to record variables or data structures in other programming languages; theyõre useful because
they enable you to reference and transfer whole groups of variables by citing a single, succinct
variable name. In CobolScript, group items are also used to define file records. See the Data and
Copybook Files section of this chapter for more information on file records.

The syntax of a group-level data item variable definition is:

<level - number> <variable - name>.

<subvariable - definition>.

.

.

.

As in elementary items, the level-number of a gldi indicates the variableõs position in the hierarchy; see
the definition of level number for elementary data items for more information.

The variable-name of a group item is the name assigned to the variable, just as in elementary data items.

In group items, no PIC or VALUE clauses are allowed. This is because a gldiõs structure is defined
solely by its subvariable-definitions. A group-level data itemõs subvariables can be group items
themselves, making possible multiple levels of grouping, or the subvariables can be elementary data
item variables.

Below is a standard group-level data item variable definition. In this example, group_variable is the
group item, and is composed of two elementary items:

1 group_variable.

 5 component_1 PIC XXX VALUE `mS1`.

 5 component_2 PIC $,999.99.

The FILLER Variable

The FILLER variable is a special type of elementary data item; it should only be used as a subvariable
to a group item, because it is always given the name FILLER, and cannot be directly referenced. The
syntax of a FILLER variable definition is:

<level - number> FILLER PIC <picture - clause> VALUE <value - literal>.

Page 28 CobolScript® Developerôs Guide

The level-number and picture-clause are the same as those for a normal elementary data item, except
FILLER variables should never be level 1 variables (because they must be subvariables).

A VALUE clause should almost always be specified for a FILLER variable, since FILLERs generally
act as constants in a program. In cases where the FILLER variable is just acting as a placeholder, a
VALUE clause may not be necessary.

Once defined, FILLER variables can only be referenced and modified indirectly, through references
to their parent variable. They should be used in cases where there is no need for a direct reference,
such as when a component of a group item remains static throughout the program. In the example
below, a FILLER variable is one of three subvariables that comprise the group item variable
group_variable:

1 group_variable.

 5 component_1 PIC XXX VALUE `mS1`.

 5 FILLER PIC X(n) VALUE ` has a dollar value of `.

 5 component_2 PIC $,999.99.

Using PIC X(n) with FILLER variables

The special picture clause PIC X(n) can (and generally should) be used with any alphanumeric
FILLER variable for which you specify a VALUE clause. PIC X(n) automatically assigns a length to
the FILLER variable based on the length of the VALUE clause, so that you donõt have to calculate
the variable length yourself when creating the picture clause. For example, in group_variable above,
the FILLER variable is automatically assigned a length of 23 characters because the value clause is 23
characters long.

For more information on PIC X(n), see Appendix E, CobolScript Picture Clauses.

Implied PIC X(n) FILLER vari ables

FILLER variables using PIC X(n) can also be defined with a shorthand notation that eliminates the
FILLER keyword, picture clause, and VALUE keyword. This is best illustrated with an example:

1 group_variable.

 5 `Enter your name here: `.

In group_variable above, there is a single FILLER variable, with a value of `Enter your name here: `.
The above gldi is the exact equivalent of the following:

1 group_variable.

 5 FILLER PIC X(n) V ALUE `Enter your name here: `.

This shorthand may only be used when the FILLER variableõs value is an alphanumeric that is set off
by delimiters.

REPLICA Variables

A REPLICA variable is a special type of elementary item variable that has the same name and level
number as a previously defined elementary item variable, and refers to the same physical variable in
memory as the originally defined variable. REPLICA variables are useful when defining multiple

 CobolScript® Developerôs Guide Page 29

group item variables that all require the same elementary item component; using a replica in these
cases avoids the task of moving values back and forth between these elementary items.

REPLICA variables are defined with a level number, variable name, and the REPLICA keyword.
PIC and VALUE clauses are not permitted in a REPLICA variable because they are not meaningful;
this information is defined by the original variable (also called the replica parent), whose definition
always precedes the REPLICA variable definition. Similarly, no VALUE clauses are permitted in
replicas, and both the replica and the replica parent must be elementary item variables with the same
level number. Hereõs the basic REPLICA variable syntax:

<level - number> variable_name REPLICA.

And hereõs a simple example of REPLICA usage:

1 group_variable_1.

 5 component_1 PIC XXX VALUE `mS1`.

 5 ` has a dollar value of `.

 5 component_2 PIC $,999.99 value 125.99.

1 group_variable_2.

 5 `The value in the component_1 replica variable is: `.

 5 component_1 REPLI CA.

 DISPLAY group_variable_1.

 DISPLAY group_variable_2.

 MOVE `q72` TO component_1.

 DISPLAY group_variable_1.

 DISPLAY group_variable_2.

In the above example, the normal, full definition of component_1 occurs in the group_variable_1
group item definition; the second component_1, defined in group_variable_2, is a replica of the
original component_1. Thus, component_1 inside group_variable_1 is the replica parent, and
component_1 inside group_variable_2 is the replica. The output of the code above is:

mS1 has a dollar value of $125.99

The value in the component_1 replica variable is: mS1

q72 has a dollar value of $125.99

The value in the component_1 replica variable is: q72

The OCCURS Clause Variable

In CobolScript, the OCCURS clause variable is a special type of variable, either elementary or group
item, that defines arrays of each of its subvariables. The OCCURS clause syntax excels over other
types of array definition syntax when defining record arrays; this is because arrays of records fit
naturally within the syntax of an OCCURS clause group item definition.

The syntax of an OCCURS clause group item variable definition is:

Page 30 CobolScript® Developerôs Guide

<level - number> <variable - name> OCCURS <n> TIMES.

<elementary - item - defin ition> or <group - item - definition>.

.

.

.

The syntax of an OCCURS clause elementary item variable definition is:

<level - number> <variable - name> OCCURS <n> TIMES PIC <picture - clause>

 VALUE <value - literal>.

An OCCURS clause variable is defined the same way as its underlying form (elementary or group
item), except for the OCCURS clause. This clause is initiated by the OCCURS keyword; in the case
of the OCCURS group item, it indicates that the subvariables that comprise this group are recurring.
In the case of the OCCURS elementary item, it indicates that this particular variable is recurring. In
either case, the number of times the OCCURS variable(s) recur is indicated by a positive (strictly
greater than zero) integer value n, which can either be a numeric literal or a numeric variable.

When referencing an OCCURS variable, you must use an index to indicate which of the recurring
variables you mean. The index must be an integer with a value from 1 to n. So, if the OCCURS
variable is defined using either of these forms:

1 occurs_variable OCCURS 10 TIMES.

 5 component_1 PIC 99.

 5 component_2.

 10 component_2_1 PIC XX.

 10 component_2_2 PIC 99.

or,

1 component_1 OCCURS 10 TIMES PIC 99.

Then, component_1 is a recurring variable (along with component_2 and its subvariables in the
group item example), and its index can be any number or variable with an integer value from 1 to 10,
inclusive. So, to reference the third OCCURS variable of component_1 in a statement, we would
use the syntax:

component_1(3)

or, alternatively:

component_1(integer_variable)

where integer_variable is an integer numeric variable that is equal to 3 at the time it is referenced. We
can also use the syntax:

component_1(expression)

where expression is any valid mathematical expression that evaluates to a positive integer, such as the
following expression, which again assumes a value of 3 for integer_variable:

component_1(((2^2)+integer_variable)%3)

 CobolScript® Developerôs Guide Page 31

The group item component_2 and its two subvariables, component_2_1 and component_2_2, can
be referenced the same way as component_1; thus, all of the following forms are permissible:

component_2(3)

component_2_1(3)

component_2_1(integer_variable)

component_2_2(((2^2)+integer_variable)%3)

Specifying a VALUE clause for an elementary item that recurs initializes all OCCURS elements to
the value-literal. For example, in the gldi below, component_1(1) through component_1(5) will have
initial values of 05, and component_2_1(1) through component_2_1(5) will have initial values of
`me`. Specifying a value clause for an OCCURS elementary data item has the same net effect, as in
the second OCCURS clause definition below:

1 occurs_variable OCCURS 10 TIMES.

 5 component_1 PIC 99 VALUE 5.

 5 component_2.

 10 component_2_1 PIC XX VALUE `me`.

 10 component_2_2 PIC 99.

or,

1 component_1 OCCURS 10 TIMES PIC 99 VALUE 5.

Note that CobolScript Standard Edition only permits single-level OCCURS clauses. In other words,
two-dimensional and higher arrays are not supported by the Standard Edition. This means that an
OCCURS clause gldi that has any OCCURS clause subvariables is not permitted in the Standard
Edition. See below for an explanation of multidimensional array usage in CobolScript Professional
Edition.

Multidimensional Arrays Using CobolScript Professional

If you are programming with CobolScript Professional Edition, you can define OCCURS clause
variables that contain other OCCURS clause subvariables. This type of variable is also known as a
multidimensional array because its individual elements comprise an array that has more than one index
argument, or dimension. Letõs take a look at a basic multidimensional array definition using
CobolScript Professional:

1 day_of_week OCCURS 7 TIMES.

 5 hour_of_day OCCURS 24 TIMES.

 10 fahr_temp PIC --- 9 VALUE ï300.

 10 barom_pressure PIC 99.99 VALUE 0.

In the definition above, 168 total instances of the fahr_temp and barom_pressure variables are
created and initialized. Each elemental variable corresponds to a temperature and barometric
pressure reading for a specific hour of the day on a specific day of the week. The value in a specific
element is referenced using a two-argument array reference with the dimensions separated by
commas, as in the following statement:

DISPLAY fahr_temp(1, 13).

Ā

Page 32 CobolScript® Developerôs Guide

This statement corresponds to displaying the temperature value for 1:00 PM on Sunday, assuming
Sunday is treated as the first day of the week.

The same range of argument syntax is permissible in multidimensional arrays as in one-dimensional
arrays, so that the following are all valid references, assuming var_idx1 and var_idx2 are both
properly defined:

fahr_temp(7, var_idx2)

hour_of_day(6+1, var_idx2)

barom_pressure(var_idx1, var_idx2)

fahr_temp(var_idx1+1, var_idx2 - 1)

Additional array dimensions are declared using additional nested OCCURS clauses:

1 a OCCURS occurs_num TIMES.

 5 b PIC X VALUE `b`.

 5 c.

 10 d PIC 9 VALUE 1.

 10 e PIC XX VALUE `ee`.

 5 f OCCURS 2 TIMES PIC XX VALUE `ff`.

 5 g OCCURS 3 TIMES.

 10 h PIC XX VALUE `hh`.

 10 i OCCURS 4 TIMES.

 20 j PIC X VALUE `j`.

 20 k PIC X VALUE `k`.

 20 l OCCURS 2 TIMES PIC XX VALUE `ll`.

 20 m OCCURS 2 TIMES.

 30 n PIC X VALUE `n`.

Referencing syntax for variables with more than two dimensions is just an extension of the two
dimension case, with additional commas separating the additional array dimensions:

MOVE `p` TO n(1,2,3,1).

DISPLAY `n(1,2,3,1) after move = ` & n(1, 1+1, occurs_num - 1, 1).

There is no technical limit to the number of array dimensions that can be used in CobolScript
Professional; however, the limit on the number of variables that may be declared in a single program
creates a practical upper bound on the number of array dimensions. At any rate, careful
programming will rarely warrant the use of more than three dimensions. Although exceptions may
apply in certain mathematical programming cases, and in cases involving intentional denormalizing
of data constructs, very large dimension arrays should generally be avoided in order to keep your
programs comprehensible.

Data and Copybook Files

Like variables, data and copybook files hold information that can be used in a CobolScript program.
Of course, files are external entities, and as such are independent of the program and are stored
separately on disk. Files also have a total capacity that is generally only limited by your disk space,

 CobolScript® Developerôs Guide Page 33

rather than being controlled by program limitations (although there are limits on individual record
sizes in data files).

Data Files

A CobolScript data file is just a special type of ASCII text file that contains data records. Records are a
long string of data values, or fields. Each record is terminated with a linefeed.

Records have a specific layout, so that each record has the same number of fields, and each specific
field within a record shares formatting characteristics with the field in the same position in the other
records in the data file. For example, if the fifth field in a record is a numeric with the value 000311 ,
then the fifth fields in the other records in the file will also be six byte numerics. An example
delimited data file with a delimiter of ô|õ and several records in it might look like this:

12051999|al@bbnb.net|Reynolds|Al|10 Meisenheimer Drive|Womack| MI|49332|

12051999|smith@ffdfff.com|Smith|Roy|511 Critical Pass|Boca Raton|FL|33983|

07061999|misterm@wyyyee.edu|M|Mr|302489|Rejkyavik||54663 - 211|

Data files can be either token-delimited or fixed format. In a delimited file, a single byte delimiter
character of your choice is used to separate individual fields from one another, while in a fixed
format file, a fixed number of bytes is assigned to each field, so there is no need for a delimiter.

To enable a particular data file to be processed by a program, you must first describe the file. This is
done with the FD (File Description) statement. The FD statement has the following syntax:

FD <filename> RECORD IS <length> BYTES.

The filename argument is the alphanumeric literal or variable that indicates the name and path of the
data file. Itõs best to keep your data files in the same directory as the CobolScript engine if you
frequently move your code between machines with Windows file systems and ones with Unix file
systems. This is because the directory symbol is different for these file systems (ô\õ versus ô/õ) and
your code will then require that you change this symbol every time you switch between the two
platforms.

Itõs important that you specify the correct length argument, since this tells CobolScript where to end
the record. A record is terminated with a carriage return-linefeed combination for Windows
machines, and just a linefeed for Unix platforms; these terminating characters, however, are not
included in the length argument, so that the same file can be described by the same FD statement,
regardless of platform.

The length argument can be either a numeric variable or a numeric literal. In either case, it should
have a positive (strictly greater than zero) integer value.

The length of a fixed width record is always equal to the sum of the lengths of the fields that
comprise it; calculating the length of a delimited record is a bit more involved, but not difficult. The
minimum length that you must use for a CobolScript delimited record, provided your delimiter
requires one byte of storage, is always equal to the formula:

Sum of lengths of individual record fields + (number of field s in record)

Page 34 CobolScript® Developerôs Guide

In delimited files, CobolScript right-pads the records with spaces, so that each record is still the exact
number of bytes specified in the length argument. This fact is relevant if you process a delimited
data file created with another application: Although reading and appending to that file will work fine
in CobolScript, updating existing records will not, since each record has a different size. For more on
this topic, see Chapter 4, File Processing and I/O.

Once youõve described a file, you must define a record variable with subvariables that represent each
component field in the record. In CobolScript, you define record variables like any other group-level
data item. You can define file record variables anywhere within a program, so long as the record
definition appears prior to any file processing statements that make use of the record such as READ
and WRITE. Itõs important to not leave any fields out of your record definition, and to define them
with the proper format and length, especially if they are fixed-length format. An incorrect or
incomplete record definition will cause your record subvariables to be populated with the wrong
fields, and your data will be messed up, to say the least.

A FD statement for a fixed-width record, followed by the record definition for the file, might look
like this:

1 filename_var PIC X(n) VALUE `file.dat`.

1 bytes_var PIC 999 VALUE 100.

FD filename_var RECORD IS bytes_var BYTES.

1 record_var.

 5 rv_field_1 PIC X(50).

 5 rv_field_2 PIC X(10).

 5 rv_field_3 PIC X(40).

Data file manipulation is discussed in detail in Chapter 4, File Processing and I/O.

Copybook Files

Copybook files are external code files that can be loaded into a CobolScript program via a single
statement. The contents of the copybook file are then treated as if they were part of the program.
Copybooks are most commonly used to store variable definitions, especially record variable
definitions, since the same data file is often used by multiple programs. Using a copybook to store a
record variable definition reduces programming effort and eliminates the possibility of discrepancies
in the definition across programs. Copybooks also work well for storing group-level data items that
contain HTML that you want to replicate across your CobolScript CGI programs.

Copybook files are included in a program with the COPY or INCLUDE statement. These
statements are special in that they can be located anywhere within a program. This allows the code in
a copybook to be substituted into the program at any location, wherever the COPY or INCLUDE
statement is placed.

In the following example, an INCLUDE statement is inserted into a program to include the file
testvars.cpy , which is located in the parent directory of the CobolScript engineõs directory, on a
Windows machine:

 FD test.dat RECORD IS 17 BYTES.

 INCLUDE `.. \ testvars.cpy`.

 CobolScript® Developerôs Guide Page 35

Although itõs possible to include a path in the INCLUDE statement like this example does, itõs
inadvisable if you frequently move your code between machines with Windows file systems and ones
with Unix file systems. The directory symbol is different for these file systems (ô\õ versus ô/õ) and
your code will then require that you change this symbol every time you switch between the two
platforms.

 When we examine the contents of testvars.cpy, we see that this file contains a few simple variable
definitions that can then be referenced by the calling program:

1 content_length PIC 9(5).

1 eof PIC 9.

1 occurs_var OCCURS 5 TIMES.

 5 occurs_var_1 PIC 999.

Assuming that it follows the INCLUDE statement in our original program, the following MOVE is
legitimate because the definition for eof is now included in the programõs variables:

MOVE 1 TO eof.

For more information on the COPY and INCLUDE statements, see their respective entries in
Appendix A, Language Reference.

Expressions and Conditions

Expressions and conditions can appear in multiple locations in a CobolScript program. Positional
string reference and array arguments can be expressions; CobolScript COMPUTE statements, which
assign a value to a single variable, permit the use of mathematical expressions in the assigning value;
the CobolScript DISPLAY and DISPLAYLF statements allow expressions as arguments, and the
expressions are then evaluated before the result is displayed; and the IF statement and all variations
of the PERFORM .. UNTIL statements evaluate conditions. Below are the CobolScript rules of
syntax and evaluation for expressions and conditions. See Appendix A, Language Reference, for the
exact syntax of COMPUTE, DISPLAY, IF, and PERFORM.

Expressions

In CobolScript, an expression is any mathematical formula that has a single-value solution. An
expression can consist of any other expressions, numeric literals, variables, functions, or assignment
statements using mathematical operators. All variables used in an expression must be properly
defined with a numeric picture clause prior to the expressionõs statement, because the variablesõ
values will be substituted in prior to evaluating the expression. Functions, which are mathematical
operations such as sine, cosine, present values, and the natural log, are described fully in Appendix B,
Function Reference.

CobolScript permitted operators

Symbol Meaning Example Example result

+ Add 5 + 2 7

- Unary negative sign -4 -4

- Subtract 5 - 2 3

* Multiply 2 * 2 4

Page 36 CobolScript® Developerôs Guide

Symbol Meaning Example Example result

/ Divide 7 / 7 1

^ Raise to a power 2^4 16

\ Express in scientific notation 2\ 2 2 * 10^2 = 200

% Modulus, or mod 10%4 2

= Equals 1 = 3 0

Symbol Meaning Example Example result

NOT = Not equal to 1 NOT = 3 1

> Greater than sign 18 > 1 1

 1 > 18 0

 1 > 1 0

< Less than sign 18 < 1 0

 1 < 18 1

 1 < 1 0

>= Greater than or equal to 18 >= 1 1

 1 >= 18 0

 1 >= 1 1

<= Less than or equal to 18 <= 1 0

 1 <= 18 1

 1 <= 1 1

AND Logical AND 2 AND 0 0

 5 AND 3 1

 0 AND 0 0

OR Logical OR 1 OR 0 1

 0 OR 0 0

 3 OR 7 1

XOR Logical exclusive OR 1 XOR 0 1

 0 XOR 0 0

 3 XOR 7 0

NOT Logical NOT NOT 1 0

 NOT 0 1

 NOT 9 0

Order of operations

Operations are not necessarily performed from left to right in an expression; instead, they are
evaluated in an order that depends on the relative rank of the operation, so long as no parentheses
are used. The order in which operations are performed in an expression, from first performed to last
performed, is:

Order Operation(s)

1 - (unary negative sign)

2 ^ (power)

3 \ (scientific notation)

4 % (mod)

5 /, * (divide, multiply)

6 +, - (add, subtract)

 CobolScript® Developerôs Guide Page 37

Order Operation(s)

7 >, <, >=, <= (greater than, less than, greater than or equals,
 less than or equals)

8 =, NOT = (equals, not equals)

9 NOT (logical not)

10 AND (logical and)

11 XOR (logical exclusive or)

12 OR (logical or)

Rather than memorizing the order of operations, we recommend that you always use parentheses in
your expressions. This will ensure that operations are performed in the order that you wish, and will
avoid confusion for anyone else who reads or maintains your code.

Example expressions

Expression Meaning

5 The number 5.

X The value of the variable X.

X + Y
or

X+Y

The value of the variable X plus
the value of the variable Y.

X+Y + Z The value of the variable X plus
the value of the variable Y plus
the value of the variable Z.

(((X+Y)/Z)%3) ^1.86 -
SQRT(X)

The variable X plus the variable Y,
all divided by Z,
all modõed by 3,
all raised to the power of 1.86,
all minus the square root of the variable X (SQRT is a
function).

3\ 2 3 multiplied by 10 to the power of 2,
equivalent to 3 * (10^2).

 ROUNDED(X*Y*Z-
Q/5/4^0.34)

The variable X multiplied by the variable Y multiplied
by the variable Z,
all minus the value of:
 The variable Q divided by 5 divided by the value
 of:
 4 to the power of 0.34.

The result is passed as an argument to the
ROUNDED function, and is rounded to the nearest
integer.

X + SIN(PI(0)/2) The variable X plus the sine of p/2 radians (SIN and
PI are both mathematical functions).

Expression construction rules

¶ Any level of nesting using parentheses is permitted.

Page 38 CobolScript® Developerôs Guide

¶ There is a finite length of expression permitted; generally speaking, keep your expressions
small enough to be easily understandable and you will avoid this limit. If you do encounter
the limit, divide your expression up into multiple assignment statements.

¶ There is a finite length of individual token (argument not separated by spaces) permitted.
Insert spaces between expression components if you encounter this limit.

¶ Spaces are not required between expression components if a symbol (non-word)
mathematical operator is separating the components; however, you should generally use
spaces when performing subtraction operations on variables with dashes or underscores in
their names. To illustrate, the expression òVAR-1 minus sixó can be written two different
ways, but the first method is preferred:

Ý (VAR-1 - 6)

Ý (VAR-1-6)

This is because if both VAR-1 and VAR-1-6 are defined variables, the meaning of the
second example becomes unclear to anyone reading the code. In CobolScript, longer
variable names are always substituted prior to shorter names, so that the second case above
would always evaluate to the variable VAR-1-6. Even if both variables were defined, the first
example would still evaluate to the quantity (VAR-1) minus 6, which is the desired result in
this case.

¶ Alphanumeric variables or literals in expressions that are within COMPUTE statements are
not allowed, even if the argument is in the context of a truth test. Thus, the statement:

COMPUTE total = (alnum_var = `Y`).

is illegal because it contains an alphanumeric variable (alnum_var) and an alphanumeric literal
(`Y`), even though the expression would evaluate to a numeric result. To set values based on
a test of alphanumerics, embed the assignment within an IF condition.

Conditions

Conditions are expression-like logic tests in IF and PERFORM .. UNTIL statements that evaluate to
a numeric result. In CobolScript, conditions are less restrictive than expressions are, because
conditions allow alphanumeric variables or literals to be included in tests. Like regular expressions,
though, conditions must still evaluate to a single-value result. This numeric result determines
whether the condition has evaluated to TRUE or FALSE; a result of exactly zero (0) is FALSE,
while any other result is considered to be TRUE. Thus, the conditional statement below will evaluate
to TRUE because the value of the condition is -40:

IF (4 + 6) *(- 4) THEN

General condition rules

There are some general rules that govern conditions , no matter what form they take:

¶ As mentioned above, a condition will evaluate to FALSE only if its value is zero. Any other
numeric result is TRUE.

¶ A condition must evaluate to a numeric result. Alphanumeric results are invalid.

¶ Any level of compound condition nesting using parentheses is permitted.

 CobolScript® Developerôs Guide Page 39

¶ There is a finite length of condition; generally speaking, keep your conditionõs component
expressions small enough to be easily understandable and you will avoid this limit. If you do
encounter the limit, assign the value of one or some of your expressions to a variable prior to
evaluating the condition. Then, your condition can include the variable in place of the
lengthy expression. If you cannot do this because you are evaluating alphanumerics, break
your condition up into multiple conditions instead, and nest your IF statements.

¶ There is a finite length of individual token (component of condition which is not separated
by spaces) permitted. Insert spaces between condition components if you encounter this
limit.

¶ There is no support for implied subjects or implied operators in CobolScript conditions.
You must completely write out your conditions. (If youõre not familiar with these terms,
donõt worry. They are COBOL constructs that donõt really have an equivalent in other
computer languages.)

Condition syntax

CobolScript conditions come in two types: General logic tests, or Type I conditions, and tests of the
type of value contained in an alphanumeric variable or literal, which are Type II conditions. This is
the allowed syntax for both types of conditions, and rules specific to each condition type:

Type I conditions:

<Expression>

NOT <Expression>

<Expression> AND <Expression>

<Expression> OR <Expression>

<Expression> XOR <Expression>

<Expression> [IS] [NOT] = <Expr ession>

<Expression> [IS] [NOT] EQUAL [TO] <Expression>

<Expression> [IS] [NOT] > <Expression>

<Expression> [IS] [NOT] GREATER [THAN] <Expression>

<Expression> [IS] [NOT] < <Expression>

<Expression> [IS] [NOT] LESS [THAN] < Expression>

<Expression> [IS] [NOT] >= <Expression>

<Expression> [IS] [NOT] <= <Expression>

Rules specific to Type I conditions:

¶ All Type I conditions may have numeric literals, numeric variables, alphanumeric
variables, or string literals in their component expressions.

¶ Alphanumeric comparisons of letters assigns a greater value to letters that come later
in the English alphabet. Therefore:

`Z` > `A` evaluates to TRUE;

`A` = ` ` evaluates to FALSE.

¶ Comparison of alphanumeric values to numeric values is permitted, but will default
to an alphanumeric to alphanumeric comparison. Thus, the following condition and
others like it will evaluate to TRUE:

`9` = 9

Page 40 CobolScript® Developerôs Guide

Type II conditions:

<Alphanumeric - val> [IS] [NOT] NUMERIC

<Alphanumeric - val> [IS] [NOT] ALPHABETIC

Rules specific to Type II conditions:

¶ Type II conditions are tests to determine whether the characters contained within an
alphanumeric variable or literal are NUMERIC or ALPHABETIC.

¶ A NUMERIC value is any valid number, including any negative sign and decimal
point. NUMERIC values may not include spaces; a value such as `5 ` will not be
considered numeric.

¶ An ALPHABETIC value is any value that falls within the ranges A-Z and a-z, or is a
space.

¶ All Type II conditions may operate only on alphanumeric variables or string literals.

Commands

A command is the reserved word or words that form the foundation of a single procedural
statement. In this section, we divide the commands into categories that can help give you a basic
idea of what CobolScript commands can be used for. Refer to Appendix A, Language Reference, for
detailed syntax rules governing each command as it is used in a complete statement.

General Program Control Commands

This group of commands is used to direct program flow, populate variables, and include code
modules from external files in a program. Check the Language Reference for a command to
determine its CobolScript syntax and its full capability.

ACCEPT DISPLAY INCLUDE PERFORM..VARYING

ADD DISPLAYLF INITIALIZE STOP RUN

COMPUTE DIVIDE MOVE SUBTRACT

CONTINUE GOBACK MULTIPLY UPPER

COPY IF PERFORM LOWER

TRIM LTRIM RTRIM TOK

GETCMDLINE CREATESHMPOOL PUTSHMPOOL GETSHMPOOL

DETACHSHMPO

OL

File Processing Commands

These commands execute file input and output operations on normal text files. Files in fixed width
and delimited formats can be read into normal group-level data items, and normal group-level data
items can be populated and then written to delimited or fixed-width files. Note that these

 CobolScript® Developerôs Guide Page 41

commands will only operate on ASCII files; no proprietary data formats are supported in
CobolScript.

CLOSE POSITION REWRITE

OPEN READ WRITE

READBLOCK WRITEBLOCK

LinkMaker TM Database Interactivity Commands

This group of CobolScript Professional Edition commands can be used to establish a connection
with an external database, and directly embed SQL (Structured Query Language) in your programs to
interact with that database. See Appendix H, CobolScript Professional Edition Embedded SQL, for more
information on interacting with a database in your programs and on the general syntax of embedded
SQL.

CLOSEDB EXEC SQL OPENDB

Web Processing Commands

This group of commands can be used to simplify CGI programming and interaction with a web
server. The ACCEPT DATA FROM WEBPAGE command gets CGI data that has been passed to
it via the POST method from HTML forms; DISPLAYFILE enables binary files to be sent to the
web visitor, while DISPLAYASCIIFILE sends ASCII text files; GETENV gets information about
the web server; and GETWEBPAGE gets the content of a web page at a specified address.

ACCEPT DATA FROM

WEBPAGE

DISPLAYASCIIFILE DISPLAYFILE GETENV GETWEBPAGE

Basic Email Commands

Simple emails may be sent and received using these commands. You must have an email (POP)
account in order to use GETMAIL and GETMAILCOUNT. You must have access and
permission to use an SMTP server to utilize SENDMAIL. A specific set of error-trapping variables
is mandatory when using these commands; these variables can be used to redirect program flow
when errors are encountered in the mail transfer process.

GETMAIL GETMAILCOUNT SENDMAIL GETMAILSIZE DELETEMAIL

Page 42 CobolScript® Developerôs Guide

FTP Commands

CobolScript provides standard FTP commands, so that you donõt have to access the command shell
in order to invoke and conduct file transfers. You can use these commands to send and receive files
from within your CobolScript applications. A specific set of error-trapping variables is mandatory
when using these commands; these variables can be used to redirect program flow when errors are
encountered in the file transfer process.

FTPASCII FTPCD FTPCONNECT FTPPUT

FTPBINARY FTPCLOSE FTPGET

TCP/IP Commands

This group of commands provides the means to do TCP/IP socket programming using CobolScript.
Socket programming is useful for building data interfaces over a network, and for other types of
network communication tasks. A specific set of error-trapping variables is mandatory when using
these commands; these variables can be used to redirect program flow when errors are encountered
with a particular command.

ACCEPTFROMSOCKET CONNECTTOSOCKET GETHOSTNAME RECEIVESOCKET

BINDSOCKET CREATESOCKET GETTIMEFROMSERVER SENDSOCKET

CLOSESOCKET GETHOSTBYNAME LISTENTOSOCKET SHUTDOWNSOCKET

Unix Shell-style Commands

These commands either mimic a Unix shell command (BANNER and CALENDAR), provide a
unique twist on a shell command (GETBANNER and GETCALENDAR), or allow interaction
with the host environment (CALL).

BANNER CALL GETCALENDAR

CALENDAR GETBANNER

Dynamic Processing Command

This command enables dynamic execution of CobolScript statements that are held within variables.
This allows statements to be created ôon the flyõ and is a basic construct of AI programming.

EXECUTE

FTP

TCP/IP

 CobolScript® Developerôs Guide Page 43

CobolScript Reserved Words

This is a list of the reserved words in CobolScript, which includes commands, keywords, special
division and section words, and words reserved for future use in later releases of the CobolScript
engine. Not all words listed here necessarily have meaning to the current version of the CobolScript
engine, but you should not use any of these exact words as variable or module names. This list does
not include CobolScript function names, but you should also avoid naming any variables with the
same name as any function. The complete list of functions is in Appendix B, Function Reference.

ACCENT ELSE IF SENDSOCKET

ACCEPT ELSIF INTO SENTENCE

ACCEPTFROMSOCKET END IS SET

ADD ENDIF INCLUDE SHUTDOWNSOCKET

ALPHABETIC END- EXEC INITIALIZE SINGLEQUOTE

AND END- IF LENGTH SLEEP

AT END- PERFORM LESS SOURCE

AUTHOR ENVIRONMENT LINEFEED SPACE

BANNER EQUAL LISTENTOSOCKET SPACES

BINDSOCKET EQUALS MOVE SQL

BY EVALUATE MULTIPLY STOP

BYTES EXEC NEXT SUBTRACT

CALENDAR EXECUTE NOT TAB

CALL FD NUMERIC THAN

CARRIAGERETURN FILE OBJECT THEN

CLOSE FILLER OCCURS TIME

CLOSEDB FROM OFFSET TO

CLOSESOCKET FTPASCII OPEN STOP

COMPUTE FTPBINARY OPENDB SUBTRACT

COMPUTER FTPCD OR TAB

CONFIGURATION FTPCLOSE PERFORM THAN

CONNECTTOSOCKET FTPCONNECT PIC THEN

CONTINUE FTPGET POSITION TIME

COPY FTPPUT PROCEDURE TO

CREATESOCKET GETBANNER PROGRAM- ID UNTIL

CRLF GETCALENDAR READ UPDATING

DATA GETENV READING USING

DATE GETHOSTBYNAME RECEIVESOCKET VALUE

DAY GETHOSTNAME RECORD VARYING

DAY- OF- WEEK GETMAIL RELATIVE WEBPAGE

DELIMITED GETMAILOUNT REMAINDER WITH

DISPLAY GETTIMEFROMSERVER REPLICA WORKING- STORAGE

DISPLAYASCIIFILE GETWEBPAGE REWRITE WRITE

DISPLAYFILE GIVING ROUNDED WRITING

DISPLAYLF GOBACK RUN XOR

DIVIDE GREATER SECTION ZERO

DIVISION IDENTIFICATION SENDMAIL ZEROS

DOUBLEQUOTE TRIM LTRIM RTRIM

TOK GETCMDLINE CREATESHMPOOL PUTSHMPOOL

Page 44 CobolScript® Developerôs Guide

GETSHMPOOL DETACHSHMPOOL UPPER LOWER

Statements

A statement joins a CobolScript command with arguments and other keywords to form a single,
distinct operation. You can also think of a statement as being a ôstepõ in a program, since the
CobolScript engine executes code in a statement-by-statement manner. Sometimes a statement is
just a single-word command without arguments, as in the following two cases:

FTPASCII

CONTINUE

Normally, however, statements are composed of commands, arguments, and any additional
keywords that are required to complete the statement, as in:

MOVE source_var TO target_var

COMPUTE target_var = Y + 1

DIVIDE 10 BY 3 GIVING div_resu lt REMAINDER remain_result

GETENV USING `CONTENT- LENGTH` content_variable

All statements, like sentences, must begin after column 7 (the seventh character counting from the
left-hand side of your text program file), meaning that the leftmost character in a statement should be
in column 8 or higher.

You should indent statements that are nested within conditionals with a consistent offset for each
successive level of nesting to make your code more legible. Appropriate indentation looks like this:

MOVE 20 to x.

PERFORM UNTIL (x < 2)

 COMPUTE target_var = SQRT(x)

 IF target_var < SQRT(2) THEN

 DISPLAY `x is less than 2`

 ELSE

 IF target_var > (SQRT(4)+1) THEN

 DISPLAY `x is greater than 9`

 END- IF

 END- IF

 MOVE target_var TO x

END- PERFORM.

A statement can be spread across multiple lines of your program if you wish, so long as all individual
arguments and keywords within the statement remain intact. A statement should not, however,
begin on the same line as a previous statement. The following lines, for example, are valid
CobolScript code:

 CobolScript® Developerôs Guide Page 45

IF truth_test_var

 COMPUTE

 target - var = SQRT (x)

 + 1

 IF target - var

 < SQRT (2)

 DISPLAY `X is less than 2`

 ELSE

 DISPLAY `X > 2`

 END- IF

END- IF.

The following is not valid CobolScript code, since more than one statement is on a single line:

IF truth_test_var COMPUTE target_var = (6 + 2) END - IF.

You should be able to see by now that statements are really just a combination of the program
elements previously discussed in this chapter, like commands, variables, expressions, conditions, and
literals, in a way that makes sense to the CobolScript engine. For the exact syntax of each
commandõs respective statement, see Appendix A, Language Reference.

Sentences

A program sentence is any phrase, statement, or group of statements in a program that is terminated
with a period.

All sentences must begin after column 7 (the seventh character counting from the left-hand side of
your text program file), meaning that the leftmost character in a statement should be in column 8 or
higher.

In CobolScript, each of the following items constitutes a discrete and complete sentence, and
therefore requires a period to terminate it:

¶ All Division and Section titles, as in ôPROCEDURE DIVISION.õ and ôWORKING-
STORAGE SECTION.õ; see Appendix F, CobolScript Basic Program Structure, for more
information on Divisions and Sections;

¶ The ôPROGRAM-ID.õ and ôAUTHOR.õ keywords in the Identification Division are each
complete sentences on their own. Also, the argument to each of these keywords is a
complete sentence;

¶ The ôSOURCE COMPUTER.õ and ôOBJECT COMPUTER.õ phrases in the Environment
Division are each complete sentences on their own. The argument to each of these phrases
is a complete sentence as well;

¶ All complete FD (File Description) entries;

¶ All variable definitions, whether group-level data item or elementary data item;

¶ Module (code paragraph) names;

¶ All complete statements that are not between PERFORM..END-PERFORM (an in-line
perform) or IF..END-IF.

Page 46 CobolScript® Developerôs Guide

¶ If a statement is nested within an in-line perform or conditional, periods must not be used.
The sentence in these cases terminates with the ôEND-PERFORM.õ or the ôEND-IF.õ
keywords. If there are multiple levels of nesting, only the outermost level should be
terminated with a period, as in the example that we used previously to demonstrate proper
indentation:

MOVE 20 to x.

PERFORM UNTIL (x < 2)

 COMPUTE target_var = SQRT(x)

 IF target_var < SQRT(2)

 DISPLAY `x is less than 2`

 ELSE

 IF target_var > (SQRT(4)+1)

 DISPLAY `x is greater than 9`

 END- IF

 END- IF

 MOVE target_var TO x

END- PERFORM.

Comments

Comments are text that has no effect on your programõs execution. Comments must begin with an
asterisk (*) in column 7 (the seventh character counting from the left-hand side of your program file).
Therefore, any line in a program that has an asterisk in column 7 will be ignored by the CobolScript
engine, no matter what other text is on that line.

Well-placed, meaningful comments are critical to the readability and overall worth of your program.
Explaining difficult-to-understand or non-intuitive code with a good comment will ultimately save
you and anyone who edits your code a large amount of time.

 CobolScript® Developerôs Guide Page 47

Page 48 CobolScript® Developerôs Guide

File Processing and I/O

ccessing and manipulating disk-resident data are tasks that must be performed by any
application that has long-term information storage requirements. Almost all business
applications utilize or manipulate external information in some form, and many scientific
programs also have data input and output, so any good programming language must

incorporate commands to enable the processing of data that is external to the program.

All native CobolScript data processing is done with ASCII text files, commonly referred to as flat files;
this flat file processing is the primary focus of this chapter. CobolScript will correctly process data
files that are either fixed field width or single-character delimited. If the data in the file is delimited,
the parsing of the fields is handled internally by CobolScript.

The data records in CobolScript data files are stored sequentially, meaning one after another.
Sequential organization is the most straightforward approach to organizing records within a file; the
operations that can be performed on such a file are necessarily basic, and in CobolScript, input and
output commands are restricted to entire-file operations (OPEN and CLOSE), entire-record
operations (READ, WRITE, REWRITE), and an operation that moves the file pointer
(POSITION). Nevertheless, if you have previously only dealt with relational database access
methods to retrieve or modify data, you should pay special attention to this chapter, since data access
methods such as direct SQL calls are strictly a CobolScript Professional Edition feature and are not
available from within CobolScript Standard Edition.

It is, however, possible for CobolScript Standard Edition to interact with a relational database, if the
RDBMS (relational database management system) supports stored procedures, these procedures can
be called from the system prompt, and the RDBMS is able to direct the output from stored
procedure calls to flat files. Our interaction technique, which uses a combination of stored
procedure calls and intermediate flat files, is described in the last section of this chapter. Since your
actual technique will vary depending on the relational database that you use and any firewall that may
exist on your network, the information in this section is presented at a more conceptual level than
the other sections in the chapter.

If you are programming with CobolScript Professional Edition, and you want to directly interact with
a relational database using CobolScript LinkMakerÊõs embedded SQL capability, refer to Appendixes
G and H for instructions on configuring and using LinkMakerÊ.

Chapter

4
A

I C O N K E Y

Ā Important point

 CobolScript® Developerôs Guide Page 49

Describing Files and Defining Data Records

Before any processing can be done on a data file, you must first describe it using an FD statement,
and you must create a record variable that defines the individual fields within each data record. See
the Data and Copybook Files section of Chapter 3 for more details on describing a file and
defining a data record.

Opening Files

Before you can begin reading data from a file or writing data to a file, you must first open the file.
Opening a file lets the operating system know that you intend to perform an input or output
operation on that file, and prepares the file for subsequent operations. You can open a file in
CobolScript for reading, writing, updating, or appending.

If you open a file for writing and the file already exists, its contents will be destroyed and a new file
created in its place. Opening a file for reading, updating, or appending, however, will not destroy the
fileõs contents.

The DELIMITED WITH clause can be added to an OPEN statement to indicate that a data file is
delimited, meaning that fields are separated with a single-character delimiter that is specified after the
WITH keyword. The absence of the DELIMITED WITH phrase indicates that the data file has
fixed width fields, which will be separated based on the individual field sizes in the record definition.

Below are some examples of each variation of the OPEN statement, with and without the
DELIMITED WITH clause:

OPEN test_file FOR READING.

OPEN `test.dat` FOR READING DELIMITED WITH `|`.

OPEN `test_file FOR WRITING.

OPEN test_file FOR WRITING DELI MITED WITH `,`.

OPEN `test.dat` FOR APPENDING.

OPEN test_file FOR APPENDING DELIMITED WITH `,`.

If youõre working in a Unix environment, you must have the appropriate permissions set for your
data files; specifically, read as well as write permissions must be set on all data files for all file
processing options. Even files that are only opened for reading must have Unix write permissions
set, because early versions of CobolScript used OPEN FOR READING to update records as well as
to read them; to be backward compatible, current versions of CobolScript still support this format.

Closing Files

After you have finished working with a file, you must close it. Closing a file releases the file
descriptor to the operating system; failing to close a file will cause the file to be locked and appear
unavailable to other applications. Here is an example of the CLOSE statement:

CLOSE `test.dat`.

In the following CobolScript program, we simply open and close a file. Since it is opened for writing,
the file will be created if it does not already exist, or overwritten if it does already exist.

Ā

Page 50 CobolScript® Developerôs Guide

1 io_file PIC X(n) value `IO.DAT`.

FD io_file RECORD IS 100 BYTES.

OPEN io_file F OR WRITING.

CLOSE io_file.

Reading Records From Files

The READ statement reads one data record from the data file and loads it into the target record
variable. A single READ will read data until it reaches a line terminator, at which point it stops. The
line terminator is the ASCII character or character combination that is used by your operating system
to indicate the end of a line, usually either the carriage return or carriage return and linefeed
characters in combination. The line terminator is not included in the record data.

The AT END clause of the READ statement is an error-trapping routine that recognizes when the
end-of-file marker has been reached, and executes a specific statement when this condition is met.
We have chosen to use a MOVE statement in this example; any simple one-line statement, such as
DISPLAY or COMPUTE, could be substituted for the MOVE. The clause should be used in most
cases; if the AT END clause is not specified, reaching the end of a data file will cause a CobolScript
error.

Once a data record has been read and the target record variable populated, the component fields of
the record variable can be used like any other variable. Below is some example code that utilizes the
READ statement:

1 test_file PIC X(n) VALUE `TEST.DAT`.

FD test_file RECORD IS 100 BYTES.

1 input_record.

 5 ir_component_1 PIC X(50).

 5 ir_component_2 PIC X(50).

1 eof PIC 9 VALUE 0.

OPEN test_file FOR READING.

PERFORM UNTIL EOF

 READ test_file INTO input_record

 AT END MOVE 1 TO eof

 DISPLAY `Record component 1 is: ` & ir_component_1

END- PERFORM.

CLOSE test_file.

Overwriting a File

To overwrite a file, just open it for writing and write the new output to the file using the WRITE
statement. Writing will put data from a source literal or variable into a single record in the file. In

 CobolScript® Developerôs Guide Page 51

this example, the fields comprising RECORD-VARIABLE are assumed to have already been
populated:

OPEN test_file FOR WRITI NG DELIMITED WITH `|`.

WRITE record_variable TO test_file.

CLOSE test_file.

Appending New Records to an Existing File

To append records to the end of an existing file, open the file for appending and write each record to
the file using the WRITE statement. Each WRITE statement will add the source record to the file as
the last sequential data record. Hereõs the code for several appends to a delimited data file:

1 test_file PIC X(n) VALUE `test. dat`.

1 bytes_num PIC 99 VALUE 10.

FD test_file record is bytes_num bytes.

OPEN test_file FOR APPENDING DELIMITED WITH `,`.

WRITE `12345` TO test_file.

WRITE `1234` TO test_file.

WRITE `123` TO test_file.

CLOSE test_file.

The following output (highlighted in gray) will be written to the file test.dat:

12345, `

1234, `

123, `

Each of the three records above is made up of three components: the source literal from the
WRITE statement that created that record, followed by the comma delimiter, and then followed by
enough spaces to make the total length of the record equal to ten characters. Note that even when
files are opened as delimited files, CobolScript still right-pads the record with spaces until it is the
total length declared in the FD statement (in this case, ten bytes). This padding is an intentional
feature of CobolScript, because it simplifies the task of individually updating delimited data records.
This also has relevance if you intend to update delimited data records created outside of CobolScript;
see the next section on updating records for more information.

If the DELIMITED WITH option is absent from our code block, as in the following:

OPEN test_file FOR APPENDING.

Then, assuming that the FD statement and everything else in our original block of code does not
change, the following output will be written to test.dat:

12345 `

1234 `

123 `

Page 52 CobolScript® Developerôs Guide

Now letõs look at a slightly more complex case with a record variable that is made up of two fields.
First, weõll describe the file and define the record variable:

1 test_file PIC X(n) VALUE `test.dat`.

1 bytes_num PIC 99 VALUE 9.

FD test_file record is bytes_num bytes.

1 record_var.

 5 field_1 PIC X(4).

 5 field_2 PIC X(5).

Next, weõll open the file and write some records. Note that this is a fixed width file, because there is
no DELIMITED WITH clause in our OPEN statement:

OPEN `test.dat` FOR APPENDING.

MOVE `1` TO field_1.

MOVE ̀test` TO field_2.

WRITE record_var TO test_file.

MOVE `test` TO field_1.

MOVE `1` TO field_2.

WRITE record_var TO test_file.

CLOSE test_file.

The code above would produce the following output in the file test.dat:

1 test `

test1 `

Note that each field inside a fixed width file has, not surprisingly, a fixed width. Therefore, the
second field in the above example always begins in the fifth character of the record, regardless of the
size of the first field.

Now letõs take a look at what happens if we append delimited records instead of fixed width ones.
Weõll first modify the original OPEN statement to handle comma-delimited data:

OPEN test_file FOR APPENDING DELIMITED WITH `,`.

Our record should be two bytes larger than the fixed width record to account for the two comma
delimiters that will be in each record, so we must also modify the VALUE clause in our bytes_num
variable declaration:

1 bytes_num PIC 99 VALUE 11.

We could also have changed our bytes_num value with a MOVE statement, so long as it preceded
our FD. Either way, with the two above modifications, our code would write the following to
test.dat:

1,test, `

 CobolScript® Developerôs Guide Page 53

test,1, `

You can see that, unlike the fixed width file, the starting position of each individual field within a
delimited record varies.

Writing to a File by Updating Existing Records

In certain situations, you will probably want to update a record that already exists in a data file
without appending an additional record to the file. To update a record in a data file, you should first
open the file for update using the UPDATING keyword, as in:

OPEN test_file FOR UPDATING.

Next, you should perform reads until you have read the record that you wish to update. Then, using
the REWRITE statement, you can overwrite the old record, as in the following:

REWRITE record_variable TO test_file.

Hereõs some code that demonstrates this technique more completely:

1 eof PIC 9 VALUE 0.

1 rec_found PIC 9 VALUE 0.

1 rec_position PIC 999999.

1 test_file PIC X(n) VALUE `TEST.DAT`.

FD test_file record is 9 bytes.

1 record_var.

 5 field_1 PIC X(4).

 5 field_2 PIC X(5).

1 customer_of_interest PIC X(n) VALUE `Dave`.

1 new_field_2_val PIC X(n) VALUE `Davie`.

OPEN test_file FOR UPDATING.

PERFORM VARYING rec_position FROM 1 BY 1 UNTIL eof OR rec_found

 READ test_file INTO record_var

 AT END MOVE 1 TO eof

 IF field_1 = customer_of_interest

 MOVE 1 TO rec_found

 MOVE new_field_2_val TO field_2

 REWRITE record_var TO test_file

 END- IF

END- PERFORM.

CLOSE test_file.

IF eof

 DISPLAY `Customer record of interest was not found.`

END- IF.

Page 54 CobolScript® Developerôs Guide

Because CobolScript right-pads delimited records with spaces, each record is the exact number of
bytes specified in the length argument to the initial FD statement. This allows any CobolScript data
record, whether fixed format or delimited, to be updated in a simple and efficient manner with a
simple record overlay, and without requiring any complex file reorganization for each update.
However, if you process a delimited data file created with another application such as a Microsoft

ExcelÑ CSV (comma-separated values) file, CobolScript updates to this file will usually not work
properly, since each record in the file will have a different byte length (reads and appends to the
unmodified file will work correctly, however). The data must be copied to a different file via a
CobolScript program before records can be individually updated. Hereõs an example of a program
that does this (available in the sample program RECCOPY.CBL):

 1 input_file PIC X(n) value `INPUT.CSV`.

 FD input_file R ECORD IS 100 BYTES.

 1 input_record.

 5 ir_input_1 PIC X(33).

 5 ir_input_2 PIC X(32).

 5 ir_input_3 PIC X(30).

 5 ir_input_4 PIC X.

 1 output_file PIC X(n) value `OUTPUT.CSV`.

 FD output_file RECORD IS 100 BYTES.

 1 eof PIC 9 VALUE 0.

 OPEN input_file FOR READING DELIMITED WITH `,`.

 OPEN output_file FOR WRITING DELIMITED WITH `,`.

 PERFORM UNTIL eof

 READ input_file INTO input_record AT END MOVE 1 TO eof

 WRITE input_record TO output_file

 END- PERFORM.

 CLOSE input_file.

 CLOSE output_file.

 GOBACK.

Relative and Absolute File Positioning

If you regularly process a large number of records in flat files, youõre probably aware of the time-
consuming nature of sequential searches. As your file sizes increase, sequential search times increase
by a proportional amount; if file sizes grow unchecked, search times will eventually become
unacceptably long. In fact, this is perhaps the most critical limitation of flat file databases, and it is
what prompts many organizations to opt instead for relational databases, more so than data
granularity, manageability, or other considerations.

In CobolScript, flat file search times can be reduced by using the POSITION statement. This
statement positions the file pointer at the beginning of a particular record within a text data file in a
single step. If a data file uses a sequential numeric value as the record key value, a record within the
file can be randomly (directly) accessed given that key value.

 CobolScript® Developerôs Guide Page 55

For COBOL developers, the POSITION statement functionality is similar to relative file processing.

POSITION works with standard text data files. The POSITION statement has two forms:

POSITION data_file AT RECORD record_number.

POSITION data_file RELATIVE OFFSET number_of_records.

The record_number value in the AT RECORD clause must be a positive integer in the range:

(1 <= record_number <= total number of records in file)

The record_number value (and hence the number of records in your data file) cannot exceed
2,147,483,647.

The number_of_records value used with the RELATIVE OFFSET clause must be an integer. This
value indicates the number of records, counting from the current record, that the file pointer should
be moved. Thus, a value of 1 will shift the file pointer one record forward in the data file; a value of ð
1 will shift the file pointer one record back. The number_of_records value must fall within the
absolute range:

 (-2,147,483,647 <= number_of_records <= 2,147,483,647)

Furthermore, a number_of_records value that causes the file pointer to be positioned before the
beginning of the data file or after the end of the data file will cause a CobolScript error.

When using the POSITION statement, the number of bytes specified in the BYTES clause of the
FD statement for your file must exactly match the number of bytes in the data file record; this value
is used to reposition the file pointer, and a BYTES value that is larger or smaller than the actual data
record size will cause the file pointer to be incorrectly positioned.

The following POSITION example uses the AT RECORD clause to access a particular record
based on a sequential key value. The record is then read and displayed. After this, the file pointer is
repositioned to the record prior to the record first read by using the RELATIVE OFFSET clause of
POSITION:

1 filename_var PIC X(n) VALUE `datafile.txt`.

1 bytes_num PIC 99 VALUE 50.

FD filename_var RECORD IS bytes_num BYTES.

1 record_variable.

 5 order_nbr PIC 99999.

 5 data_var PIC X(45).

1 key_val PIC 99999 VALUE 24331.

OPEN filename_var FOR READING.

POSITION filename_var AT RECORD key_val.

READ filename_var INTO record_variable.

Page 56 CobolScript® Developerôs Guide

IF order_nbr = key_val

 DISPLAY `For order number ` & order_nbr & `, data = ` & data_var

ELSE

 DISPLAY `Problem with order_nbr values in data file; check file.`

END- IF.

POSITION filename_var RELATIVE OFFSET ï2.

READ filename_var INTO record_variable.

IF order_nbr = (key_val - 1)

 DISPLAY `For order number ` & order_nbr & `, data = ` & data_var

ELSE

 DISPLAY `Problem with order_nbr values in data file; check file.`

END- IF.

CLOSE filename_var.

STOP RUN.

Relational Database Interaction with CobolScript Standard

Edition

CobolScript Standard Edition can interact with a relational database if the database supports batch
interaction from the system prompt, and if the database is able to direct the output from these batch
interactions to ASCII text files. Ideally, the database will also support stored procedures. For table

inserts, a batch row-loading utility such as Oracleõs SQLLoaderÑ will simplify the job.

Weõve devised a technique for database interaction with CobolScript Standard which we describe
further below, but it may not work with your system since every database product is different.

Instead, we recommend you use the LinkMakerÊ feature of CobolScript Professional Edition to
embed SQL calls directly into your CobolScript code. If you have CobolScript Professional, read
Appendixes G and H for further information on configuring LinkMakerÊ and embedding SQL
directly in your programs.

Note that network security configurations and firewalls may restrict your access to your database
across your network. Even if you have complete access to your database, if you are using your
CobolScript engine as a server-side language to complement your web server, you should be careful
about which pieces of your database are made visible to the internet through SQL or stored
procedure calls, especially if your database has sensitive data in it.

Regarding database security and information protection, in general, these are complicated topics
beyond the scope of this manual. In larger organizations, network and database administration staff
should normally be sought out and included in the decision-making process whenever there is the
risk, however slight, of revealing sensitive information to the outside world. Most network
administrators will appreciate it if you approach them prior to attempting to implement your idea.

 CobolScript® Developerôs Guide Page 57

Weõll look at the three main SQL table interactions here (select, insert, and update). We exclude delete
because in most production database cases, deletes are best handled by first updating a table row as
ôto be deletedõ, and then deleting all such rows later in a batch stored procedure. Our explanations
assume that you are already familiar with SQL and your particular relational database software. You
should also have an understanding of how to write shell scripts for your operating system.

The Unix shell scripts that are included in this section are meant only as conceptual guidelines for
your development; the database login portions of these scripts wonõt directly work with any one
relational database product without at least minor modification.

Selects (Queries)

Select statements come in two forms, from a CobolScript perspective: Those that have static SQL,
and those that require input from a CobolScript program.

Static Selects

Static selects are table queries that donõt require any external parameters. It is just the SQL statement
that remains static in a static query; the query results can change, even if the database remains
unchanged between queries. This is because time constraints can be included in a static query, as in
the following SQL statement:

SELECT customer_name

FROM customer_table

WHERE last_updated_datetime > (NOW ï 1)

Assuming that the database is capable of converting the expression ôNOW ð 1õ into the datetime
equivalent of 24 hours prior to now, there is no need for this query to incorporate external inputs. A
Unix shell script that directs the output of this static query to a text file would look something like the
script below:

#!/bin/ksh

sqllogin óuserid/passwdô <<EOF >queryresult.dat

 SET HEADING OFF

 SET ECHO OFF

 SET BREAK OFF

 WHENEVER SQLERROR pkg_output.screen _write(óDatabase errorô|SQLERROR)

 SELECT customer_name

 FROM customer_table

 WHERE last_updated_datetime > (NOW ï 1)

 EOF

Two different approaches can be used to gather the result set from a static query inside a CobolScript
program:

¶ The first approach is to run the query script in batch mode (on a daily basis, for instance)
outside of the CobolScript program. Then, the CobolScript program only needs to open the
data file and process the data. This approach puts the least strain on the database and on

Page 58 CobolScript® Developerôs Guide

your system, and returns a query result in the quickest time. The drawback to this method is
that the data is not current at the time the CobolScript program is executed.

¶ Alternatively, you can call the shell script from within a CobolScript program using the
CALL statement, and then open and read the resulting data from the shell scriptõs output file
using normal file processing methods. Hereõs some code that does this, along with a minor
bit of code that takes advantage of the error trapping included in the above shell script.
Assume the shell script above is named query.sh, and is in the same directory as our
CobolScript engine:

CALL `query.sh >error.txt`.

OPEN `error.txt` FOR READING.

READ `error.txt` INTO ERROR - REC AT END MOVE `Y` TO WS - EOF.

CLOSE `error.txt`.

MOVE `N` TO WS - EOF.

IF ERROR- REC(1:14) = `Database error` THEN

 DISPLAY ERROR- REC

ELSE

 OPEN `queryresult.dat` FOR READING

 PERFORM UNTIL WS- EOF = `Y`

 READ `queryresult.dat` INTO QUERY - REC AT END MOVE `Y` TO WS - EOF

 DISPLAY QUERY- REC

 END- PERFORM

 CLOSE `queryresult.dat`

END- IF.

STOP RUN.

The results returned by this approach are essentially real-time. The drawback to this type of query is
that it accesses the database every time this program is run.

Dynamic Selects

Dynamic selects are table queries that require external parameters, as in the following SQL statement:

SELECT customer_name

FROM order_table

WHERE customer_id = $customer_id_var

AND order_number > $order_number_var

Here, the fields $customer_id_var (the value assigned to the shell script variable customer_id_var)
and $order_number_var are passed in to the query from an external source (in this case, the shell
script).

Hereõs our new shell script to handle the above query:

#!/bin/ksh

customer_id_var=$1

order_number_var=$2

 CobolScript® Developerôs Guide Page 59

sqllogin óuserid/passwdô <<EOF >queryresult.dat

 SET HEADING OFF

 SET ECHO OFF

 SET BREAK OFF

 WHENEVER SQLERROR pkg_output.screen_write(óDatabase errorô|SQLERROR)

 SELECT customer_name

 FROM order_table

 WHERE customer_id = $customer_id_var

 AND order_number > $order_number_var

 EOF

This script is dependent on two input parameters ($1 and $2), which are then assigned to our two
variables. The variable values are inserted into the WHERE clause, thereby changing our query
condition and result based on external values.

Unlike static queries, dynamic selects must always be performed at the time the calling program is
run, since their result set depends directly on parameters passed in from the calling program. Hereõs
a portion of the CobolScript code to call the above shell script:

 MOVE `ó101101ô` TO cust_id.

 MOVE `22345` TO order_nbr.

* We build our CALL argument below. All of the following target

* variables are assumed to be components of the group item

* input_group.

 MOVE `query.sh ` TO input_arg_1.

 MOVE cust_id TO input_arg_2.

 MOVE ` ` TO input_arg_3.

 MOVE order_nbr TO input_arg_4.

 MOVE ` >error.txt` TO input_arg_5.

* At this point, input_group has a literal value of

* `query.sh ó101101ô 22345 >error.txt`. The two literals that follow

* query.sh are our two shell script param eters that will be used

* inside the WHERE clause of the query.

 CALL input_group.

 OPEN `error.txt` FOR READING.

 READ `error.txt` INTO error_rec AT END MOVE 1 TO eof.

 CLOSE `error.txt`.

 MOVE 0 TO eof.

 IF error_rec(1:14) = `Database error` THEN

 DISPLAY error_rec

 ELSE

 OPEN `queryresult.dat` FOR READING

Page 60 CobolScript® Developerôs Guide

 PERFORM UNTIL eof

 READ `queryresult.dat` INTO query_rec AT END MOVE 1 TO eof

 DISPLAY query_rec

 END- PERFORM

 CLOSE `queryresult.dat`

 END- IF.

 STOP RUN.

By building the CALL argument in this manner, you can easily pass the values in CobolScript
variables as parameters to shell scripts. These parameters can then be used in select statement
conditions that are inside the shell script.

Inserts

Weõll be doing database inserts a bit differently than we handled queries, since inserts tend to be
involve much more text input than dynamic select statements do.

A batch ASCII file loading utility will simplify the task of inserting database rows from CobolScript
input. The insert example that we give below assumes that such a utility is available for you to use.

Hereõs the important CobolScript code for our insert:

 FD `order.dat` RECORD IS 57 BYTES.

 1 order_rec

 5 re c_cust_id PIC X(10).

 5 rec_order_nbr PIC 9(6).

 5 rec_order_val PIC 99999.99.

 5 rec_tax_val PIC 99999.99.

 5 rec_salesperson_nbr PIC 9(5).

 5 rec_date_and_time_val PIC X(14).

 1 order_info.

 5 cust_id PIC X(10).

 5 order_nbr PIC 999999.

 5 order_val PIC 99999.99.

 5 tax_val PIC 99999.99.

 5 salesperson_nbr PIC 99999.

 5 date_and_time_val.

 10 date_val PIC X(8).

 10 time_val PIC X(6).

* First we assign our values to be inserted. This is a simplification;

* Itôs likely that you would first collect at least some of this data

* from the user on a web page form or from keyboard input.

 MOVE `ó101101ô` TO cust_id.

 MOVE `223 45` TO order_nbr.

 MOVE 199.95 TO order_val.

 MOVE 12.90 TO tax_val.

 MOVE 1226 TO salesperson_nbr.

 CobolScript® Developerôs Guide Page 61

 ACCEPT date_val FROM DATE.

 ACCEPT time_val FROM TIME.

 MOVE order_info TO order_rec.

 OPEN `order.dat` FOR WRITING DELIMITED W ITH `,`.

 WRITE order_rec TO `order.dat`.

 CLOSE `order.dat`.

 CALL `sqlins configfile.txt order.dat >loadinfo.txt`.

 DISPLAYASCIIFILE `loadinfo.txt`.

 STOP RUN.

Most batch loading utilities take a configuration file input and produce one or several file outputs.
Normally, the configuration file names all the other files involved, such as the input data file, the
output information file, and an output ôbadõ record file that contains all data records that were not
successfully inserted in the. In the CALL statement above, however, we include the order.dat and
loadinfo.txt files to enhance your understanding of this operation, since we donõt provide a
configuration file example.

Consult your load utilityõs documentation for information on how to construct the load
configuration file.

Updates

Database updates are perhaps the most code-intensive operations to perform using CobolScript.
The technique we employ to do updates uses portions of both our dynamic select and our insert
operation techniques.

Weõll use the following update statement as our starting point:

UPDATE order_table

SET customer_name = $customer_name_var

 ,order_val = $order_val_var

 ,salesperson_nbr = $salesperson_nbr_var

 ,update_time stamp = TO_DATE(óDDMMYYYYhh24missô, $date_and_time_val)

WHERE customer_id = $customer_id_var

AND order_number = $order_number_var

As was the case in our dynamic select example, the fields that are preceded by a $ sign are passed in
to the update statement as shell script variable values. This time, however, weõll use an interim file to
transfer these variables from the CobolScript program to the shell script, rather than pass all of these
variables as parameters to the shell script.

The new shell script will extract all of our relevant variables from a data file that we generated in
CobolScript. Since weõre looking at the shell script before we examine our CobolScript program,
assume for now that the data file update.dat is a comma-delimited file that contains our field data in a
single record, and in the following order:

customer_name_var,order_val_var,salesperson_nbr_var,date_and_time_val,customer_id_var,order_number_var

Page 62 CobolScript® Developerôs Guide

The shell script is below. Note that weõve chosen to use the Unix cut command to extract our
CobolScript variable values from update.dat. Consult your man pages for an explanation of this
command:

#!/bin/ksh

customer_name_var=`cut ïf 1 ïd ó,ô update.dat`

order_val_var=`cut ïf 2 ïd ó,ô update.dat`

salesperson_nbr_var=`cut ïf 3 ïd ó,ô update.dat`

date_and_time_val=`cut ïf 4 ïd ó,ô update.dat`

customer_id_var=`cut ïf 5 ïd ó,ô update.dat`

order_number_var=`cut ïf 6 ïd ó,ô update.dat`

sqllogin óuserid/passwdô <<EOF >updateresult.dat

 SET HEADING OFF

 SET ECHO OFF

 SET BREAK OFF

 WHENEVER SQLERROR pkg_output.screen_write(óDatabase errorô|SQLERROR)

 UPDATE order_table

 SET customer_name = $customer_name_var

 ,order_val = $order_val_var

 ,salesperson_nbr = $salesperson_nbr_var

 ,update_timestamp = TO_DATE(óDDMMYYYYhh24missô,

 $date_and_time_val)

 WHERE customer_id = $customer_id_var

 AND order_number = $order_number_var

 EOF

And hereõs our CobolScript code to call the above shell script. Assume that the shell script is named
update.sh and is located in the working directory of the CobolScript program:

 FD `update.dat` RECORD IS 59 BYTES.

 1 order_rec.

 5 customer_name_var PIC X(10).

 5 order_val_var PIC 99999.99.

 5 salesperson_nbr_var PIC 9(5).

 5 date_and_time_val PIC X(14).

 5 customer_id_var PIC X(10).

 5 order_number_var PIC 9(6).

 1 order_info.

 5 customer_name_var PIC X(10).

 5 order_val_var PIC 99999.99.

 5 salesperson_nbr_var PIC 9(5).

 5 date_and_time_val.

 10 date_val PIC X(8).

 10 time_val PIC X(6).

 5 customer_id_var PIC X(10).

 CobolScript® Developerôs Guide Page 63

 5 order_number_var PIC 9(6).

* First we assign our values to be updated. This is a simplification;

* Itôs likely that you would first collect at least some of this data

* from the user on a web page form or from keyboard input.

 MOVE `Larry Melman` TO customer_name_var.

 MOVE 199.95 TO order_val_var.

 MOVE 1226 TO salesperson_nbr_var.

 ACCEPT date_val FROM DATE.

 ACCEPT time_val FROM TIME.

 MOVE `ó101101ô` TO customer_id_var.

 MOVE `22345` TO order_number_var.

 MOVE order_info TO order_rec

 OPEN `update.dat` FOR WRITING DELIMITED WITH `,`.

 WRITE order_rec TO `update.dat`.

 CLOSE `update.dat`.

* Since all of our variables were written to a file to be used by the

* shell script, we donôt pass any parameters to the shell script when

* we call it.

 CALL `update.sh>error.txt`.

 OPEN `error.txt` FOR READING.

 READ `error.txt` INTO error_rec AT END MOVE 1 TO eof.

 CLOSE `error.txt`.

 MOVE 0 TO eof.

 IF error_rec(1:14) = `Database error` THEN

 DISPLAY error_rec

 ELSE

 DISPLAYASCIIFILE `updateresult.dat`.

 END- IF.

 STOP RUN.

Although the code for the update technique is a bit more involved than the code for our select and
insert techniques (primarily because we use a data file interface with the shell script in the update,
rather than passing parameters to the script), itõs still relatively straightforward. Of course, if you
donõt exceed the shell script parameter limit, an update script can still be called using parameters, just
like the dynamic select example.

Page 64 CobolScript® Developerôs Guide

Building Web-Based Systems

his chapter will describe techniques that can be used for building web-based systems with
CobolScript. Since CobolScript is an interpreted language, it lends itself well to the
debugging and tweaking that are often necessary when outputting HTML documents.
Youõll find that itõs very easy to write small pieces of CobolScript code and then run and re-

run the code in your web browser to see if you get the desired results. CobolScript also has syntax
specifically designed to simplify and quicken the development of web systems, such as the ACCEPT
DATA FROM WEBPAGE statement, the GETENV command, and the GETWEBPAGE
command, all of which are described in this chapter.

If youõre still confused about why you need a language other than HTML to create web pages, the
answer is that you donõt, if all that youõre interested in doing is displaying static web pages. However,
if you want your site visitors to interact with your web pages in any way; if you want to display or not
display certain HTML based on conditions; or if you want to build a web-based system, then a
programming language like CobolScript, not just a markup language like HTML, is required.
Furthermore, as you become more familiar with web programming., you will discover that using a
web server and standard browsers to run CobolScript web-based systems that are internal to your
organization (intranets) can be an efficient and economical alternative to systems that have a client-
side component that must be individually installed and managed on each userõs machine.

CobolScript normally communicates with a web server through CGI (the Common Gateway
Interface). The Common Gateway Interface is a type of protocol; it defines a method of interaction
between the web server and external programs, which are normally run by the web server in only two
situations:

¶ When a form on an active web page is submitted;

¶ When a URL that calls a program (as opposed to a URL that calls a static web page) is typed
into the Location: text box, or its equivalent, in a browser.

When data from a web page is sent to a CobolScript program, the data is encoded in accordance with
the CGI protocol. The CobolScript engine can automatically decode this data stream when it has
been submitted via the Post method and place each field of data in a corresponding CobolScript
variable. This makes CobolScript a very easy programming language to use for web and internet
development. Instead of building interfaces to web servers, you can focus your programming efforts
on the business logic that belongs in your code.

To run the program examples in this chapter, or to run any CobolScript web programs, for that
matter, you must have access to a web server. You must also have installed the CobolScript engine

Chapter

5
T

I C O N K E Y

Ā Important point

 CobolScript® Developerôs Guide Page 65

on the same machine as your web server software, ideally in the web serverõs cgi-bin directory. If you
have installed the CobolScript engine on your PC, you can install web server software on your PC as
well, which will allow you to test your web development code without uploading it to a different
machine. By using a web server on your own PC, you wonõt even need an internet or network
connection to run your code. The Apache web server and derivatives work well for Unix platforms,

and OmniHTTPd is a good web server for WindowsÑ. Both are free. For further information on
how to install CobolScript for use with a web server, see the Installing CobolScript section of
Chapter 1, Introduction to CobolScript/Installation Instructions. Refer to the section Running CobolScript
from a Web Server and Browser in Chapter 2, Getting Started with CobolScript, for general
information on steps you must take for your programs to be capable of being run from a browser.

Interacting with a Web Server and Web Browser

Figure 5.1 provides a (simplified) representation of the normal methods by which CobolScript
interacts with a web server and browsers. The browser sends data to the server when a CGI form is
submitted or a free-text URL calling a program is completed, and this information is then passed
directly from the server to CobolScript. The CobolScript engine interprets the inputs and makes
them available to your CobolScript program. Your program then creates custom web page content,
either based on the browser inputs or other information, and delivers this content back to the
browser (actually, this delivery is done via the web server, but this interaction is excluded from the
diagram for the sake of clarity) in the form of virtual HTML. Virtual HTML differs from static

Figure 5.1 ð A representation of CobolScript program interactions with a web browser and web server.

HTML in that virtual HTML is HTML code that has been output by a program, while static HTML
resides in an independent HTML file. There is no syntactical difference between the two.

Web Server

Web Browser

Virtual HTML

Document

CobolScript

program

CobolScript Program-Calling Events

CGI form embedded

in HTML web page

is submitted

Free text typed into

URL, Enter key

pressed

Program Inputs

from Browser

P
ro

g
ra

m
 O

u
tp

u
t

Browser Program Inputs

Page 66 CobolScript® Developerôs Guide

Creating Virtual HTML

Creating a virtual HTML document is simply a matter of displaying valid HTML to standard output.
The example program below, which weõll call hello1.cbl, is very simple CobolScript code that will do
just this, without any conditions or input processing.

To run the example, first place it in your web serverõs cgi-bin directory. Then, if you are running
your browser and your web server on the same machine, and 127.0.0.1 is your web serverõs loopback
address (the IP address that a machine typically uses to refer to itself), execute the program by typing
http://127.0.0.1/cgi-bin/cobolscript.exe?hello1.cbl in your browserõs URL window. If your web
server is on a different machine than your browser but you know your server IP address, just
substitute that address for 127.0.0.1.

You can also run this program from a command line by simply typing the following at the command
prompt:

cobolscript.exe hello1.cbl

This will display the raw HTML output to your command line screen.

Hereõs the hello1.cbl code:

DISPLAY `Content - type: text/html `.

DISPLAY LINEFEED.

DISPLAY `<HTML><BODY>`.

DISPLAY `<CENTER>Hello World</CENTER>`.

DISPLAY `</BODY></HTML>`.

GOBACK.

You can see that the first text we display is the MIME header, which is this exact literal:

`Content - type: text/html `

This is followed immediately by the display of a LINEFEED character. Displaying a MIME header,
followed by a linefeed, indicates to the web server that the program output that will follow the header
will be a certain MIME type of input. In this case (and in the vast majority of your CGI
programming), the MIME type is text/html, which means that we intend to output HTML content.
The web server will recognize this MIME type and pass the remainder of our output on to the
browser as HTML.

Itõs very important to remember to display the correct MIME header, followed by a line with only a
linefeed, in the beginning of your CobolScript CGI programs. Failing to do this may prevent
anything at all from displaying in your browser when you attempt to run your programs; depending
on how your web server is configured, you may or may not get an appropriate error message in your
browser window.

After the program has displayed all of the HTML (which is then transferred by the web server to the
browser), it executes the GOBACK command to terminate processing, and your browser window
will have the phrase òHello Worldó in it.

Ā

http://127.0.0.1/cgi-bin/cobol.exe?hello.cbl

 CobolScript® Developerôs Guide Page 67

Creating an HTML Form

If you want to create a web page that will allow your users to enter data, the simplest way to do this is
by using an HTML form. Forms allow you to create text boxes, text areas, list boxes, check boxes,
and radio buttons to collect data, reset buttons to clear data entries, and submit buttons to submit the
data to a receiving program. See Chapter 7 for a detailed discussion on how to use each of the form
components in programs.

The FORM tag, along with its end tag, are used to demarcate the form, which is essentially a data
input area inside an HTML document. Every form has an associated action; this action is specified
in the ACTION component of the FORM tag. The ACTION argument is an URL that names a
CGI program that will be executed when the browser user submits the form. In the case of the
program below, which weõll name hello2.cbl, the action is /cgi-bin/cobolscript.exe?hello2.cbl. In this
example, when you submit the form on your web browser, it will run the hello2.cbl program again.
Of course, since incoming data is not processed by this program, the data typed in the text box is lost
after the form is submitted.

Hereõs the code for hello2.cbl:

DISPLAY `Content - type: text/html`.

DISPLAY LINEFEED.

DISPLAY `<HTML> <BODY>`.

DISPLAY `<CENTER>Hello World</CENTER>`.

DISPLAY `<FORM ACTION=ò/cgi-bin/cobolscript.exe?hello2.cblò `

 & `METHOD=POST>`.

DISPLAY `<INPUT TYPE=TEXT NAME=òmy_variableò>`.

DISPLAY `<INPUT TYPE=SUBMIT VALUE=òClick here to Submitò>`.

DISPLAY `</FORM>`.

DISPLAY `</BODY></HTML>`.

GOBACK.

The program above uses a simple text box (created by INPUT TYPE=TEXT) to collect
information. Youõll notice that the text box has a NAME argument associated with it, and that the
name is my_variable; this is the CGI field name. The CGI field name is the name of a CGI variable
that will hold the contents of the text box when the form is submitted from the web page.

Capturing Input Data from a Web Page

At this point, youõre probably wondering how the data from the CGI variable gets into a variable in a
CobolScript program. In CobolScript, when your program needs to get form data from a web page,
you just use a special form of the ACCEPT statement called ACCEPT DATA FROM WEBPAGE.
Hereõs an example:

ACCEPT DATA FROM WEBPAGE.

This command will get the CGI data that was submitted, parse it, decode it, and place the contents in
CobolScript variables that have the same names as the incoming CGI variables.

Page 68 CobolScript® Developerôs Guide

To accept data from a CGI form into a CobolScript program, you must define variables to capture
the contents of the incoming CGI variables. The CobolScript variables must have the same names
as the CGI variables. The program in this section, which weõll call hello3.cbl, accepts a CGI variable
called òmy_variableó into a like-named CobolScript 40 byte alphanumeric variable that weõll define
here:

1 my_variable PIC X(40).

1 content_length PIC 9(05).

If you look at our hello3.cbl code segment below, youõll notice that we use the GETENV command
before we accept the CGI data from the web page. This command gets the value of the web server
environment variable that is specified as the GETENV argument and places its contents into a
CobolScript variable. The environmental variable CONTENT_LENGTH holds the CGI query
stringõs actual length. The query string is the raw data stream that the POST method uses to send
data to a target program, so if this the length of this string is greater than zero, we know that there is
data to accept. Itõs good practice to get the value of CONTENT_LENGTH at the beginning of
your CobolScript program, because by doing this, you know whether or not there is CGI data
waiting for you to process. If the value of CONTENT_LENGTH is zero, then you know that the
user is simply running your web based application for the first time and has not submitted a form on
it. If CONTENT_LENGTH is greater than zero, then you know that the user has submitted a
form from your application.

The ACCEPT DATA FROM WEBPAGE command handles all of the parsing of the POST
method-submitted data internally, so you donõt have to worry about decoding the CGI data passed
to the web server.

Hereõs the rest of the code for hello3.cbl:

GETENV USING `CONTENT_LENGTH` content_length.

IF content_length > 0

 ACCEPT DATA FROM WEBPAGE

END- IF.

DISPLAY `Content - type: text/html`.

DISPLAY LINEFEED.

DISPLAY `<HTML><BODY>`.

DISPLAY `<CENTER>Hello World</CENTER>`.

DISPLAY `my_variable: ` & my_variable.

DISPLAYLF `<FORM ACTION=ò/cgi-bin/cobolscript.exe?hello3.cblò `

 & `METHOD=òPOSTò>`

DISPLAY `<INPUT TYPE=òTEXTò NAME=òmy_variableò VALUE=ò`

 & my_variable & `ò>`.

DISPLAYLF `<INPUT TYP E=òSUBMITò VALUE=òClick here to Submitò>`

DISPLAYLF `</FORM>`.

DISPLAY `</BODY></HTML>`.

Again, if CONTENT-LENGTH is greater than zero, there is CGI data waiting to be accepted, and
therefore the ACCEPT DATA FROM WEBPAGE statement should be executed. This statement
will look at the CGI data stream being sent from the web server, decode it, and match the CGI form

 CobolScript® Developerôs Guide Page 69

variable names with CobolScript variable names. That is why both the CobolScript variable and the
form field are named my_variable. Because these two names correspond, the data associated with
the form field my_variable will be moved to the contents of the CobolScript variable my_variable. All
decoding and parsing of the CGI data stream is performed automatically.

Important note: The maximum elementary variable size in CobolScript is 2,000 bytes. If you happen
to have an individual CGI field that has contents greater than 2,000 bytes, only the first 2,000 bytes
of data will be stored in any target CobolScript variable that is an elementary data item. The rest will
be truncated.

DISPLAY and DISPLAYLF

The DISPLAY and DISPLAYLF commands differ most significantly in the way they handle group
items. This has special relevance in the context of CGI development, since you may or may not
want your HTML output to have line breaks in it that makes it more readable. The differences in the
two are:

¶ The DISPLAY command will print a literal or the contents of any variable to standard
output. After all of the arguments to DISPLAY have been displayed, a linefeed character
displays, terminating the output. In the case of a group-level data item DISPLAY, all
individual components of the group item will print on the same line.

¶ The DISPLAYLF command will print a literal or the contents of a variable to standard
output, followed by an ASCII line feed character between each individual component of a
group-level data item, or each individual argument, if multiple arguments are specified. After
all of the arguments have been displayed, another linefeed character is displayed to complete
the output.

Letõs take a look at how DISPLAY and DISPLAYLF each display the following group-level data
item. Note the use of the Implied PIC X(n) FILLER variables (explained in the Variables section
of Chapter 3):

1 form_var.

 5 `<FORM ACTION=cobolscript.exe?test.cbl METHOD=POST>`.

 5 `<INPUT TYPE=TEXT NAME=field1>`.

 5 `<INPUT TYPE=SUBMIT VALUE=Submit>`.

 5 `</FORM>`.

The statement DISPLAY form_var will produce the following output (all on a single line):

<FORM ACTION=cobolscript.exe?test.cbl METHOD=POST><INPUT TYPE=TEXT NAME=field1 ><INPUT TYPE=SUBMIT VALUE=Submit></FORM>

The statement DISPLAYLF form_var will produce the following output:

<FORM ACTION=cobolscript.exe?test.cbl METHOD=POST>

Ā

Page 70 CobolScript® Developerôs Guide

<INPUT TYPE=TEXT NAME=field1>

<INPUT TYPE=SUBMIT VALUE=Submit>

</FORM>

Retrieving Web Pages

If you ever need to build an application that retrieves web pages, you can use the GETWEBPAGE
command. It connects to a web server, retrieves a given web page, and saves it to a user-specified
file.

The program below called WEB.CBL demonstrates the usage of the GETWEBPAGE command.
It utilizes a standard data structure called TCPIP-RETURN-CODES. This group level data item will
be populated with information from the specific web server you are accessing. TCPIP-RETURN-
CODE is a number, while TCPIP-RETURN-MESSAGE is a string. Typically a successful return
code for this operation will be zero, and the return message will contain a string describing the
number of bytes received for a particular web document.

Hereõs a portion of the code for WEB.CBL:

1 TCPIP - RETURN- CODES.

 5 TCPIP - RETURN- CODE PIC 9(07).

 5 TCPIP - RETURN- MESSAGE PIC X(255).

MOVE `www.deskware.com` TO host_name.

MOVE `/cobol/cobol.htm` TO web_page_name.

MOVE `web.txt` TO fi le_name.

DISPLAY `<` host_name `>`.

DISPLAY `<` web_page_name `>`.

DISPLAY `<` file_name `>`.

GETWEBPAGE USING host_name web_page_name file_name.

DISPLAY `TCPIP - RETURN- CODES: ` TCPIP - RETURN- CODES.

GOBACK.

The host name in this example is a fully qualified domain name ð www.deskware.com. It is also
acceptable to specify a raw IP address as the host name argument. The file name argument is used to
create a file with the HTML that you are retrieving. The named file is overwritten each time the
GETWEBPAGE command is executed.

 CobolScript® Developerôs Guide Page 71

Page 72 CobolScript® Developerôs Guide

Network and Internet

Programming Using CobolScriptÈ

hile a combination of static HTML pages and basic CGI programs written in nearly any
programming language can address the on-line requirements of internet information
systems, few languages can satisfactorily address the interface and networking
requirements of internet systems, at least not without compromising platform

independence. With CobolScript, however, you can transfer files, receive and deliver email messages,
and conduct point-to-point communications with other computers, all by using standard CobolScript
commands. Because these commands all use the TCP/IP protocol or extensions such as FTP,
SMTP, and HTTP, cross-platform communication is handled the same way as same-platform
communication.

This chapter provides some basic examples of how to transfer files, send and receive emails, and
program TCP/IP sockets. By learning and expanding on these examples, you will be able to create,
in CobolScript code, the interfaces that your system requires.

Transferring Files using FTP

Sharing files is one of the fundamental motivations for networking computers. FTP (File Transfer
Protocol) is a protocol for transferring files over a TCP/IP network. FTP is an effective way to
share data between heterogeneous network hosts. CobolScript has commands that allow you to
program FTP clients to transfer files to and from FTP servers.

Most computers on the Internet support FTP access. Before you can build a program that will
access files on these FTP servers, however, you will need the following:

¶ The name of the system on the network that has the files you want to obtain, or on which
you want to place files. In other words, you need to know the fully qualified domain name
or IP address of the host that you want to transfer files from and to.

¶ A valid user name and password to use on the remote computer. Many remote computers
will allow anonymous ftp, which allows you restricted FTP access by using the user name
anonymous and your email address as the password.

FTP is extremely useful for transmitting data rapidly between sites that need to share information
system data. Using FTP eliminates many usual considerations when transferring files. By using FTP:

Chapter

6

W
I C O N K E Y

Ā Important point

 CobolScript® Developerôs Guide Page 73

¶ You wonõt need to worry about requiring both hosts to use the same types of disks or tapes
to transfer files;

¶ You wonõt have to break up a file into several smaller files because the larger file wonõt fit on
a single disk or as an email attachment.

CobolScript programs that transfer files using FTP commands can be scheduled to run at regular
time intervals. This is allows you to have unattended file transfers between hosts.

When you try to connect to a remote computer using FTP, you will need to supply a valid user name
and password. The CobolScript command FTPCONNECT is the command you should use to
login to an FTP server. Hereõs an example:

MOVE `deskware.com` TO host_name.

MOVE `anonymous` TO user.

MOVE `interpreter@deskware.com` TO password.

FTPCONNECT USING host_name user password.

After you have connected to an FTP server, you should set the transfer type. This is done with the
FTPASCII or FTPBINARY commands. If you will be transferring plain ASCII text files, you
should use FTPASCII. By doing this, the server knows to convert the files to an ASCII format that
your client computer can read. This is important because ASCII files on Windows machines are line
terminated with carriage return and line feed ASCII characters, and on Unix-based machines, ASCII
files are line terminated with only line feed characters. If you are connecting to a mainframe, text
files are stored in EBCDIC format. Using the FTPASCII command before you transfer text files
will ensure that you receive them in the ASCII format that is native to your client machine. Using
the FTPASCII command is as simple as the following statement:

FTPASCII .

If you need to transfer binary data such as word processing documents or spreadsheet files, you
should use the FTPBINARY command before transmitting files. This ensures that no ASCII
translation is performed on your file during the transfer.

Another useful command is FTPCD. It allows you to change the directory on the FTP server that
you are connecting to. Hereõs an example:

FTPCD USING ` \ ftp \ data \ interfaces`.

You should make sure that you use the correct directory naming structure for the FTP host that you
are connecting to. The above example is a directory name on a Unix based host. If it were a
Windows based server, you might use something like `C:\ datafiles\ output`, or on a mainframe you
might use `õidy2v.data.acctõ`.

The FTPGET and FTPPUT commands actually perform the file transfer operations. You should
use FTPGET to get a file from an FTP server, and FTPPUT to send a file to an FTP server. Here
are examples of these commands in complete statements:

Page 74 CobolScript® Developerôs Guide

FTPGET USING `or der.dat`.

DISPLAY `FTPGET TCPIP- RETURN- CODES: ` & TCPIP - RETURN- CODES.

FTPPUT USING `order.dat`.

DISPLAY `FTPPUT TCPIP- RETURN- CODES: ` & TCPIP - RETURN- CODES.

Using Email Commands

Although you may never have thought of email as a system interfacing tool, this is in fact what it is,
because email allows users to send and receive messages from a local machine to recipients on
destination hosts, regardless of platform. Even if the email message is only textual, and is only meant
to be read by the recipient and not cause any direct system action, the delivery and receipt of the
email constitute a system interface.

A standard email message without attachments is simply a text file, made up of header lines that tell
an email server how to deliver the message, and of the message content.

SMTP is an acronym for Simple Mail Transfer Protocol and POP3 for Post Office Protocol 3; they
are the standard TCP/IP protocols for sending email and receiving email, respectively. CobolScript
uses these protocols in its email commands, which enable the sending and receiving of simple email
messages.

To use CobolScript to build programs that send email messages, you will need access to an SMTP
server. Once you have this, you can use the CobolScript SENDMAIL command to send email.
Hereõs an example:

COPY `tcpip.cpy`.

1 to_addresses.

 5 `<nobody1@ttttt.com>`.

 5 `Nobody <nobody2@ttttt.com>`.

 5 `nobody3@ttttt.com`.

1 from_address PIC X(n) VALUE `youremail@yourhost.com`.

1 subject PIC X(n) VALUE `mail.cbl test`.

1 message.

 5 `This is a test message from mail.cbl.`.

 5 FILLER PIC X VALUE LINEFEED.

 5 `Sent from me to you.`.

1 smtp_server PIC X(n) VALUE `yoursmptserver.com`.

SENDMAIL USING to_ad dresses

 from_address

 subject

 message

 smtp_server.

DISPLAY `TCPIP - RETURN- CODES: ` & TCPIP - RETURN- CODES.

 CobolScript® Developerôs Guide Page 75

Of course, you would substitute your addresses and message for the above addresses and message.

With CobolScript there are two commands for retrieving email messages, GETMAILCOUNT and
GETMAIL. The GETMAILCOUNT command connects to your mail server and determines the
number of messages in your inbox. The GETMAIL command retrieves a copy of a specific email
message and saves its contents to a text file. GETMAIL does not remove the email message from
the server. Here is an example of how to use these commands:

MOVE `youremail@yourhost.com` TO email_address.

MOVE `yourpassword` TO email_password.

MOVE 0 TO email_count.

GETMAILCOUNT USING email_address

 email_password

 email_count

 smtp_server.

DISPLAY `Email count: ` & email_count.

DISPLAY `TCPIP - RETURN- CODES: ` & TCPIP - RETURN- CODES.

MOVE `youremail@yourhost.com` TO email_address.

MOVE `yourpassword` TO email_password.

MOVE 1 TO email_number.

MOVE `mymail.txt` TO email_file_name.

GETMAIL USING email_address

 email_password

 email_number

 email_file_name

 smtp_server.

DISPLAY`TCPIP - RETURN- CODES: ` & TCPIP - RETURN- CODES.

When the GETMAIL command retrieves an email message from a server, it appends the message to
the specified text file. This means that if you want to retrieve a copy of all of your email messages,
you should use GETMAILCOUNT to find out how many messages there are, and then perform a
loop that retrieve each message. If you want each message to be in a separate text file, you should
use a new text file name each time you call GETMAIL.

Important Note: When you are sending emails it is important to use a valid SMTP server. Generally it
works best if your applications send all emails through your SMTP server, and then your SMTP server
delivers the email to the user.

Ā

Page 76 CobolScript® Developerôs Guide

Using TCP/IP Commands

Several TCP/IP commands are available in CobolScript. They can be used for socket programming
and obtaining DNS information about a host. They are:

¶ GETHOSTNAME

¶ GETHOSTBYNAME

¶ CREATESOCKET

¶ BINDSOCKET

¶ LISTENTOSOCKET

¶ CONNECTTOSOCKET

¶ ACCEPTFROMSOCKET

¶ RECEIVESOCKET

¶ SENDSOCKET

¶ SHUTDOWNSOCKET

¶ CLOSESOCKET

DNS Commands

The program below (which is the DNS.CBL sample program) demonstrates how to use the
GETHOSTBYNAME command. You can run this program from your web browser by typing in
the URL http://127.0.0.1/cgi-bin/cobolscript.exe?dns.cbl if you are running CobolScript and a web
server on your local machine.

Both GETHOSTNAME and GETHOSTBYNAME require two special group level data items ð
TCPIP-HOSTENT and TCPIP-RETURN-CODES. These data structures are placeholders for
return values that are populated when these commands are executed. The structures must be in your
program in order for it to run properly when you use these commands.

GETHOSTNAME gets the TCP/IP hostname from your local machine and place the name in a
CobolScript variable. The GETHOSTBYNAME is a much more advanced command. It contacts
your DNS (Domain Name Server) and retrieves detailed information about a specified host name. It
retrieves information such as aliases and host addresses associated with a particular domain name. Try
running this example with some domain names like lycos.com or yahoo.com.

Here are the variable definitions for DNS.CBL. Note the two standardized TCP/IP structures that
we mentioned earlier. These would normally just be placed in a copybook by themselves, such as
tcpip.cpy, but we include them here to show their detail:

http://localhost/cgi-bin/cobolscript.exe?dns.cbl

 CobolScript® Developerôs Guide Page 77

* TCP/IP *

* DATA STRUCTURES *

* GETHOSTBYNAME REQUIRES THE DATA *

* STRUCTURE BELOW. DO NOT CHANGE IT.*

 01 TCPIP - HOSTENT.

 05 TCPIP - HOSTENT- HOSTNAME PIC X(255).

 05 TCPIP - HOSTENT- NUM- ALIASES PIC X.

 05 TCPIP - HOSTENT- ALIASES OCCURS 8 TIMES.

 10 TCPIP - HOSTENT- ALIAS PIC X(255).

 05 TCPIP - HOSTENT- ADDRESS- TYPE PIC 9(7).

 05 TCPIP - HOSTENT- ADDRESS- LENGTH PIC 9(7).

 05 TCPIP - HOSTENT- NUM- ADDRESSES PIC X.

 05 TCPIP - HOSTENT- ADDRESSES OCCURS 8 TIMES.

 10 TCPIP - HOSTENT- ADDRESS PIC X(255).

* TCP/IP RETURN CODES DATA STRUCTURE *

* DO NOT CHANGE. *

 01 TCPIP - RETURN- CODES.

 05 TCPIP - RETURN- CODE PIC 9(7).

 05 TCPIP - RETURN- MESSAGE PIC X(255).

* Program - specific variables

 1 content_length PIC 9(05).

 1 web_header_html.

 5 `Content - type: text/html`.

 5 ` `.

 5 `<HTML><BODY>`.

 5 `
`.

 5 `Sample CobolScript DNS Application`.

 5 `

`.

 5 `Enter a Fully Qualified Domain Name or an IP address and then`

 5 ` click on the Resolve button.`.

 5 `<FORM ACTION="/cgi - bin/cobolscript.exe?dns.cbl" METHOD="POST">`.

 5 `<INPUT TYPE="TEXT" NAME="host_name" SIZE=60 VALUE="`.

 5 host_name PIC X(80) VALUE `www.cornell.edu`.

 5 `">`.

 5 `<INPUT TYPE="SUBMIT" VALUE="Resolve">`.

 5 `</FORM>`.

 5 `<HR>`.

1 web_footer_html.

 5 `</BODY></HTML>`.

Page 78 CobolScript® Developerôs Guide

Hereõs our main paragraph of code for DNS.CBL. Since weõre running this program from a browser,
we first use the GETENV statement to determine whether we have input or not (see Chapter 5) and
the output that we display is HTML:

 MAIN.

 GETENV USING `CONTENT_LENGTH` content_le ngth.

 IF content_length > 0

 ACCEPT DATA FROM WEBPAGE

 END- IF.

 IF host_name = SPACES

 MOVE `www.cornell.edu` TO host_name

 END- IF.

* Populate TCP/IP structure that is defined in included copybook.

 GETHOSTBYNAME USING host_name.

 DISPLAYLF web_header_html.

 PERFORM DISPLAY- TCPIP- INFO.

 DISPLAYLF web_footer_html.

 GOBACK.

The code module below displays each of the TCP/IP variables that are populated by the call to
GETHOSTBYNAME, in an HTML table format. Weõre excluding most of this moduleõs code from
here because of its repetitive nature, but the entire code is in the DNS.CBL sample program:

 DISPLAY- TCPIP- INFO.

 1 counter PIC Z9.

 DISPLAY `<TABLE BORDER=1 BGCOLOR="CCCCCC">`.

 DISPLAY `<TR BGCOLOR="lightgreen">`.

 DISPLAY `<TD>host_name:</TD>`.

 DISPLAY `<TD>` & host_name & `</TD>`.

 DISPLAY `</TR>`.

 .

 .

 .

 DISPLAY `</TABLE>`.

TCP/IP Socket Commands

CobolScript has commands for several TCP/IP socket operations. Socket programming is very
similar to file I/O, except socket programming reads from and writes to sockets instead of files. A

 CobolScript® Developerôs Guide Page 79

socket is an endpoint of communication, created in software, and equivalent to a computerõs network
interface.

We have provided two sample programs that, when combined, demonstrate the use of socket
operations ð the first program is a socket server, and the second is its client. The server program
should first be run from one command prompt window, and then the client program run from
another . After they have both started, you can type a string in the client window that will be sent via
TCP/IP to the server. This example can easily be modified to communicate with clients and servers
on different platforms simply by changing the IP address (host name) parameters.

The server program (the sample program SERV.CBL) requires the same set of TCP/IP data
structures that we defined in the previously discussed DNS.CBL program, as well the following user-
defined variables:

1 host_name PIC X(80).

1 socket_num PIC 9(2).

1 connected_socket_num PIC 9(2).

1 port_num PIC 9(5).

1 backlog_num PIC 9(2).

1 string_var PIC X(10).

1 receive_string PIC X(20).

1 send_string PIC X(20).

Hereõs the main code. Note the order of the socket server commands (CREATESOCKET,
BINDSOCKET, LISTENTOSOCKET), which is necessary set-up for the socket before a
connection can be accepted using ACCEPTFROMSOCKET:

************ **

* This program requires that you have TCP/IP running

* on your machine.

**

 MAIN.

 GETHOSTNAME USING host_name.

 DISPLAY `Starting Deskware Server on ` & hos t_name.

 MOVE 1 TO socket_num.

 MOVE 2 TO connected_socket_num.

 CREATESOCKET USING socket_num.

 DISPLAY `CREATESOCKET return code = <` & TCPIP - RETURN- CODE & `>`.

 MOVE 2500 TO port_num.

 BINDSOCKET USING socket_num port_num.

 DISPLAY `BINDSOCKET return code = <` & TCPIP - RETURN- CODE & `>`.

 MOVE 1 TO backlog_num.

 LISTENTOSOCKET USING socket_num backlog_num.

 DISPLAY `LISTENTOSOCKET return code = <` & TCPIP - RETURN- CODE & `>`.

 DISPLAY `Waiting to accept socket connection on port ` & port_num

Page 80 CobolScript® Developerôs Guide

 & `...`.

 ACCEPTFROMSOCKET USING socket_num connected_socket_num.

 DISPLAY `ACCEPTFROMSOCKET return code = <` & TCPIP - RETURN- CODE

 & `>`.

 MOVE SPACES TO recei ve_string.

 PERFORM ACCEPT- TCPIP- CONNECTIONS UNTIL receive_string(1:4) = `STOP`.

 DISPLAY `Shutting down Deskware Server`.

 SHUTDOWNSOCKET USING connected_socket_num 1.

 CLOSESOCKET USING connected_socket_num.

 SHUTDOWNSOCKET USING socket_num 1.

 CLOSESOCKET USING socket_num.

 GOBACK.

 ACCEPT- TCPIP- CONNECTIONS.

 MOVE SPACES TO receive_string.

 RECEIVESOCKET USING connected_socket_num receive_string.

 DISPLAY `TCP/IP return code = <` & TCPIP - RETURN- CODE & `>`.

 DISPLAY `TCP/IP return message = <` & TCPIP - RETURN- MESSAGE & `>`.

 DISPLAY `This was received: ` & receive_string.

 MOVE `GOT IT` TO send_string.

 SENDSOCKET USING connected_socket_num send_string.

 DISPLAY `TCP/IP return code = <` & TCPIP - RETURN- CODE & `>`.

 DISPLAY `TCP/IP return message = <` & TCPIP - RETURN- MESSAGE & `>`.

 DISPLAY `This was sent: ` & send_string.

 CobolScript® Developerôs Guide Page 81

The client program (the sample program CLIENT.CBL) requires the same set of TCP/IP data
structures as defined in DNS.CBL, and also the following user-defined variables:

1 host_name PIC X(80).

1 socket_num PIC 9(2).

1 connected_socket_num PIC 9(2).

1 port_num PIC Z9999.

1 backlog_num PIC 9(2).

1 string PIC X(10).

1 receive_string PIC X(20).

1 send_string PIC X(20).

1 stop_var PIC 9.

The client code in this example assumes that the client and server programs are running on the same
machine (hence the move of the loopback address to host_name).

Note the interaction points between the previous server program and this client program; the server
uses ACCEPTFROMSOCKET to accept a connection initiated by the clientõs
CONNECTTOSOCKET statement. Once the connection is established, the server uses
RECEIVESOCKET to receive the data transmitted from the client using SENDSOCKET. Once
the transmission is complete, they reverse, and the server sends the string `GOT IT` back to the client
as a way to confirm the data transmission. Hereõs our client code:

 DISPLAY `Starting Deskware Client (type STOP to exit).`.

 MOVE 1 TO socket_num .

 CREATESOCKET USING socket_num.

 DISPLAY `CREATESOCKET return code = <` & TCPIP - RETURN- CODE & `>`.

 MOVE 2500 TO port_num.

Figure 6.1 ð Command prompt with server program running.

Page 82 CobolScript® Developerôs Guide

* We are using the loop back IP in this example;

* uncomment the line below and comment out the move

* to actually get the host name

* GETHOSTNAME USING host_name

 MOVE `127.0.0.1` TO host_name.

 DISPLAY `Your hostname is: ` & host_name.

 CONNECTTOSOCKET USING socket_num host_name port_num.

 DISPLAY `CONNECTTOSOCKET return code = <` & TCPIP - RETURN- CODE & `>`.

 DISPLAY TCPIP - RETURN- MESSAGE.

 PERFORM SEND- DATA- TO- SERVER UNTIL stop_var.

 SHUTDOWNSOCKET USING socket_num 1.

 CLOSESOCKET USING socket_num.

 GOBACK.

 SEND- DATA- TO- SERVER.

 ACCEPT send_string FROM KEYBOARD

 PROMPT `Data to send to port 2500: `.

 SENDSOCKET USING socket_num send_string.

 DISPLAY `SENDSOCKET return code = < ` & TCPIP - RETURN- CODE & `>`.

 DISPLAY TCPIP - RETURN- MESSAGE.

 MOVE SPACES TO receive_string.

 RECEIVESOCKET USING socket_num receive_string.

 DISPLAY `RECEIVESOCKET return code = <` & TCPIP - RETURN- CODE & `>`.

 DISPLAY `This was received: < ` & receive_string & `>`.

 DISPLAY `RECEIVESOCKET return code = <` & TCPIP - RETURN- CODE & `>`.

 DISPLAY TCPIP - RETURN- MESSAGE.

 IF send_string(1:4) = `STOP` THEN

 MOVE 1 to stop_var

 END- IF.

 CobolScript® Developerôs Guide Page 83

Figure 6.2 ð Command prompt with client programming.

Page 84 CobolScript® Developerôs Guide

Advanced Internet Programming

Techniques Using CobolScriptÈ

his chapter discusses advanced techniques for processing internet data retrieval using
CobolScript. We also briefly discuss the use of embedded JavaScript in your CobolScript
programs, for handling tasks suited for client-side processing.

Our discussion of CGI data retrieval and processing assumes that the incoming CGI data is always
submitted using the POST method. With the POST method, URL-encoded data is delivered to the
CobolScript program through standard input. The CobolScript engine reads all of this data, decodes
it, and places it in corresponding CobolScript variables.

Also, all code examples assume that youõve set your file permissions correctly. As mentioned in earlier
chapters, if youõre working in a Unix environment, always make certain that the file permissions on
your CobolScript internet programs allow the CGI user (usually user ônobodyõ) to execute them.

All of our web and internet code examples also assume that you have not modified your web server
software to make CobolScript your default CGI interpreter. However, making CobolScript the
default CGI interpreter is usually relatively easy, depending on your web server. Doing so will
simplify the URLs you use to call CobolScript programs; instead of calling a program with a URL
such as the following:

http://www.cobolscript.com/cgi-bin/cobolscript.exe?samples.cbl

You would instead use a URL such as:

http://www.cobolscript.com/cgi-bin/samples.cgi

Or, if your web server is flexible enough to allow modification to the CGI program extension, even
this:

http://www.cobolscript.com/cgi-bin/samples.cbl

However, by modifying your web serverõs configuration in this manner, you will disable any
interpreted programs already existing on the server that relied on the previous configuration, and that
were written in a different language such as Perl (these programs will be treated as CobolScript
programs and will fail to run because they are not valid CobolScript code). Use your own discretion

Chapter

7

T

 CobolScript® Developerôs Guide Page 85

in making this type of modification; a web system built from scratch, using only CobolScript code, is
an ideal candidate for this kind of configuration change; a web system with existing interpreted code
written in other languages is not. Consult your web serverõs documentation for more information on
how to configure the default interpreter path and the default CGI extension.

Environment Variables

Environment variables are system variables that exist within a particular computer userõs environment.
With regard to a web server, the full set of environment variables is recreated each time a CGI process
is executed. You can think of these variables as placeholders that a web server uses to pass data about
an HTTP request from the server to the CGI-processing application, i.e., your CobolScript program.

With CobolScript, environment variables are accessed with the GETENV command:

GETENV USING <environment variable > <cobolscript variable>.

The names for environment variables are system-specific. Fortunately, most web servers have
adopted many of the same names. Here are a few of the standard ones; experiment with these
variables in the GETENV statement to determine the formats of the contents of each of these
variables:

Environment Variable Description

CONTENT_LENGTH Size of the attached incoming CGI data in bytes (characters).

CONTENT_TYPE The MIME type of the incoming CGI data

PATH_INFO Path to be interpreted by the CGI application.

PATH_TRANSLATED The virtual-to-physical mapping of the file on the system.

QUERY_STRING The URL-encoded string that was submitted to the web server

REMOTE_ADDR The IP address of the agent making the CGI request.

REMOTE_HOST The fully qualified domain name of the requesting agent.

REMOTE_IDENT Data reported about the agentsõ connection to the server.

REMOTE_USER The User ID sent by the client agent.

REQUEST_METHOD The request method used by the client. For CobolScript
applications, this should be òPOSTó.

SCRIPT_NAME The path identifying the CGI application requested.

SERVER_NAME The server name of the requested URL. This will either be the
IP address of the server or the fully qualified domain name.

SERVER_PORT The port where the client request was received by the server.

SERVER_PROTOCOL The name and revision of the request protocol.

Page 86 CobolScript® Developerôs Guide

Environment Variable Description

SERVER_SOFTWARE The name and version of the server software. For example:
òOmniHTTPd/1.01 (Win32; I386)ó

Some web servers do not support all of these environment variables. You should consult your web
server documentation to find out what environment variables are supported by your specific web
server.

All normal web servers support the CONTENT_LENGTH environment variable. Because of this,
we recommend getting this variable when your CobolScript application is first invoked via a web
server, like this:

GETENV USING `CONTENT_LENGTH` content_length.

IF content_length > 0

 ACCEPT DATA FROM WEBPAGE

END- IF.

By doing this, you will know if a form was submitted to your application or not. If your application
was called directly from a typed URL, outside of a form submission, the value of
CONTENT_LENGTH would be 0 and you would not need to accept CGI data from the web
server. Normally, when the ACCEPT DATA FROM WEBPAGE statement is executed,
CobolScript will begin reading data from the CGI stream and place the contents in the appropriate
CobolScript variables. Of course, itõs not necessary to do this if no CGI data has been sent to the web
server.

Sometimes, web servers are configured to not populate certain environment variables such as
REMOTE_HOST. This is often done because there is a time cost in resolving the IP addresses of
each client as it makes a request. However, you can still resolve these IP addresses by using the
GETHOSTBYNAME command. Simply get the REMOTE_ADDR environment variable that
contains the IP address of the client, and use this as the argument to GETHOSTBYNAME:

GETENV USING `REMOTE_ADDR` download_ip.

GETHOSTBYNAME USING download_ip.

MOVE TCPIP- HOSTENT- HOSTNAME TO download_host.

The GETHOSTBYNAME command will resolve the IP address to its fully qualified domain name,
and the result will be placed in the TCPIP-HOSTENT-HOSTNAME variable. If the DNS server
cannot resolve the IP address, the TCPIP-HOSTENT-HOSTNAME will be spaces. Also, for
completeness, the TCP/IP return code values should always be examined after executing
GETHOSTBYNAME to determine whether the command executed successfully or not.

 CobolScript® Developerôs Guide Page 87

CGI Form Components

As we saw in Chapter 5, the ACCEPT DATA FROM WEBPAGE statement can capture HTML
form data. This data capture can be done from all of the possible submitting form components ð text
boxes, multi-line text boxes, list boxes, drop down list boxes, radio buttons, check boxes, and submit
buttons. In this section, we describe how to process input from each of these components. The
example program input.cbl illustrates the data capture for each of these components (except submit
buttons). This sample program can be found in the sample programs included with CobolScript. The
first screen of this sample program is shown in Figure 7.1.

All of the HTML form control tags that we discuss in this section have a common attribute called
NAME. This attribute is of the form:

NAME=variable_name

Or, alternatively (quotes can be included or excluded from tag attribute values; they must be included,
however, when spaces exist in the attributeõs value):

NAME=ñvariable_nameò

Figure 7.1 ð Input.cbl sample program, as seen from Netscape browser.

Page 88 CobolScript® Developerôs Guide

where variable_name is the name of the CGI variable that will be passed to the receiving program
when the form is submitted. The receiving CobolScript program, specified in the ACTION attribute
of the FORM tag, must define a variable for each submitted form control with a NAME attribute in
order for the ACCEPT DATA FROM WEBPAGE statement to work correctly.

Text Box Input

Text boxes are created with the <INPUT TYPE=TEXTé > tag. For instance, if our source CGI
form submits a text input named field1, defined here:

<FORM ACTION=ò/cgi-bin/cobolscript.exe?receive.cblò>

<INPUT TYPE=TEXT NAME=field1>

<INPUT TYPE=SUBMIT>

</FORM>

Then, our receiving CobolScript program (which will be named receive.cbl, according to the
ACTION attribute of the FORM tag above) must define a variable named field1:

1 field1 PIC X(20).

In the example program input.cbl, a text box named field1 is displayed to a web browser when the
program is run. When the form is submitted from the web browser, the CobolScript program will get
any data in the text box and place it in a CobolScript variable named field1.

Text boxes can also have preassigned values through the use of the VALUE attribute. In a more
complex example than the one above, a CobolScript program weõll call recurse.cbl, that both displays
a form and calls itself after accepting submitted input from the form, could have some code like the
following:

DISPLAY `<INPUT TYPE=TEXT NAME=field1 VALUE=ò`.

IF field1 NOT = SPACES

 DISPLAY field1

END- IF.

DISPLAY `ò>`.

DISPLAY `

`.

DISPLAY `<INPUT TYPE=SUBMIT>`.

DISPLAY `</FORM>`.

In this case, the text boxõs VALUE will be assigned ñò (a null value) if field1 is blank (all spaces);
otherwise it will be assigned the value of the CobolScript variable field1.

Text Area Input

Text area controls are created with the <TEXTAREA é > tag:

<TEXTAREA NAME=òfield2ò COLS=20 ROWS=2>

</TEXTAREA>

Our receiving CobolScript program must, in this case, define a variable named field2:

 CobolScript® Developerôs Guide Page 89

1 field2 PIC X(40).

In the example program input.cbl, a text area with the name field2 is displayed to the web browser
when the program is run. When the form is submitted from the web browser, the CobolScript
program will get any data in the text area and place it in a CobolScript variable named field2. Special
characters like carriage returns and line feeds will be translated into HTML special characters such as
 and
 This is useful when you need to save the contents of a TEXTAREA to a file
and later redisplay them in a web browser. The breaks and tabs will be preserved when you redisplay
the HTML.

Because text areas can be large, and CobolScript variables are fixed width, you may find that you want
a way to display only the initial populated portion of the text area input. HTML tends to ignore extra
spaces, so itõs not usually necessary to eliminate trailing spaces, but you may find it useful when
working inside dynamically-sized HTML tables, since trailing spaces are taken into account when table
elements are sized. The routine below accomplishes this with a PERFORM..VARYING loop and
the use of positional string referencing:

PERFORM VARYING space_location FROM 40 BY ï1

 UNTIL FIELD2(space_location:1) NOT = SPACE

END- PERFORM.

DISPLAY FIELD2(1:space_location)

List and Dropdown List Boxes

List and dropdown list boxes are displayed with the <SELECT é > tag inside an HTML form, like
this:

<SELECT NAME=òfield3ò SIZE=3>

<OPTION SELECTED>Item1

<OPTION>Item2

<OPTION>Item3

<OPTION>Item4

<OPTION>Item5

<OPTION>Item6

</SELECT>

field4:

<SELECT NAME=òfield4ò>

<OPTION SELECTED VALUE=Item11>Item 11

<OPTION VALUE=Item22>Item 22

<OPTION VALUE=Item33>Item 33

<OPTION VALUE=Item44>Item 44

<OPTION VALUE=Item55>Item 55

<OPTION VALUE=Item66>Item 66

</SELECT>

To retrieve these CGI fields, our receiving program defines two variables, one for each of the
SELECT tagsõ names:

Page 90 CobolScript® Developerôs Guide

5 field3 PIC X(20).

5 field4 PIC X(20).

The SELECT tag is relatively straightforward: The value of each option is the text that immediately
follows each OPTION tag, unless a VALUE attribute is specified in the OPTION tag. When an
option is selected and the controlling form submitted, the SELECT variable is assigned the value of
the option that was selected. By using a list box, you can limit the possible inputs that can be
submitted, and therefore more readily direct processing based on these inputs. For instance, we could
control processing based on the value assigned to field4 like this:

IF field4(1:6) = `Item33`

 DISPLAY `Item33 is currently out of stock`

ELSE

 DISPLAY field4 & ` has been ordered for you`

END- IF.

Radio Buttons

Radio buttons are created with the <INPUT TYPE=RADIO é > tag. They allow the selection of a
single option from multiple options; when created properly, only one radio item may be selected from
all radio buttons that have the same NAME value within a particular form. The VALUE tag is useful
because you can put a compressed or numeric value in it and display a different text label in your web
page, like this:

<INPUT TYPE=RADIO NAME=field5 VALUE=111>Item 111

<INPUT TYPE=RADIO NAME=field5 VALUE=222>Item 222

<INPUT TYPE=RADIO NAME=field5 VALUE =333>Item 333

<INPUT TYPE=RADIO NAME=field5 VALUE=444>Item 444

<INPUT TYPE=RADIO NAME=field5 VALUE=555>Item 555

After the form is submitted, ACCEPT DATA FROM WEBPAGE will copy the VALUE of the
radio button to the CobolScript variable with the same name as the buttons, so in this case, the
following CobolScript field definition is required:

5 field5 PIC X(3).

Checkboxes

Checkboxes are created with the <INPUT TYPE=CHECKBOX é > tag. They allow multiple
options to be selected or deselected from a group of options. When the form is submitted, those
items that were checked will have their corresponding CobolScript variables populated with the
VALUE specified for that check box item. Here is some example HTML for checkbox controls:

FIELD6: <INPUT TYPE=CHECKBOX NAME=òfield6ò

VALUE=òItem1111ò>Item1111

FIELD7: <INPUT TYPE=CHECKBOX NAME=òfield7ò

VALUE=òItem2222ò>Item2222

FIELD8: <INPUT TYPE=CHECKBOX NAME=òfield8ò

VALUE=òItem3333ò>Item3333

FIELD9: <INPUT TYPE=CHECKBOX NAME=òfield9ò

VALUE=òItem4444ò>Item4444

 CobolScript® Developerôs Guide Page 91

FIELD10:<INPUT TYPE=CHECKBOX NAME=òfield10ò

VALUE=òItem5555ò>Item5555

FIELD11:<INPUT TYPE=CHECKBOX NAME=òfield11ò

VALUE=òItem6666ò>Item6666

 Each checkbox field must have its own corresponding CobolScript variable, like this:

5 field6 PIC X(20).

5 field7 PIC X(20).

5 field8 PIC X(20).

5 field9 PIC X(20).

5 field10 PIC X(20).

5 field11 PIC X(20).

Page 92 CobolScript® Developerôs Guide

Using Hidden Fields

Hidden fields are actually just another type of CGI input, but they are special enough to warrant a
section all their own. They are HTML form fields that are not visible in the browser window, but are
still part of the underlying HTML form. They are useful for storing and passing information to the

recipient program, and they can be used to maintain program continuity through a series of
CobolScript-created pages without directly displaying all data to the browser window, and without
writing to a temporary file. The sample problem tracking system uses hidden fields in the HTML
forms it displays; figure 7.2 is a capture of the Update screen.

Figure 7.2 ð Web page with hidden fields in the underlying HTML.

 CobolScript® Developerôs Guide Page 93

Figure 7.3 shows the HTML source to the screen in 7.2, complete with hidden HTML form fields.
You can see the fields update-record and record-key have a TYPE=òhiddenó.

When this form is submitted, the field update-record will pass a value of òTó to the CobolScript variable
update-record. The form field record-key will pass a value of 00000007 to the CobolScript variable record-
key. These fields are hidden on this form because we do not want them to be edited by the user. The
record-key is used to determine which record needs to be updated after the form is submitted. This
program is the Problem Tracking System example application (PRB.CBL) that comes with the sample
programs included with CobolScript.

When you look at the source of the HTML form in Figure 7.3, you will notice that the hidden field
record-key appears on three lines, like this:

<INPUT TYPE=òhiddenò NAME=òrecord-keyò VALUE=ò

00000007

Figure 7.3 ð HTML form with hidden fields, as seen from Netscapeõs source window.

Page 94 CobolScript® Developerôs Guide

ñ>

The HTML is formatted in this way because we used DISPLAYLF to display the group level data
item that contained the HTML. Had we used DISPLAY instead of DISPLAYLF, the entire text
would have appeared on a single line. More on this below.

Hereõs a snippet of the CobolScript group item that contains the hidden field record-key. Here we
spread the tag definition across three variables (two of these are implied FILLER variables, but
variables nonetheless). This is a useful technique because it allows you to populate the CobolScript
variable record-key with a value before displaying the group item:

5 `<INPUT TYPE=òhiddenò NAME=òrecord-keyò VALUE=ò`.

5 record - key PIC 9(08).

5 `ò>`.

Sometimes when interfacing with other systems, particularly those written in Perl, the INPUT fields
must be on a single line. In these cases, use DISPLAY than DISPLAYLF to print the relevant group
item so that it prints on one line. At any rate, CobolScript is intelligent enough to process HTML
forms that contain INPUT tags on single or multiple lines, so you wonõt encounter this issue unless
you submit CGI data to non-CobolScript programs.

Sending Email from CobolScript Using CGI Form Input

As we discussed in Chapter 6, CobolScript has the capability to send simple emails, and this can easily
be linked with data that has been submitted from a form, in order to create an auto-responder. The
sample program email.cbl is an example of how to do this. The program is in the sample programs
included with CobolScript. Figure 7.4 shows the application screen.

In email.cbl, email is sent using the SENDMAIL statement after fields corresponding to the to-
address, from-address, subject, and message have been accepted from CGI input:

MOVE `yourservername.com` TO smtp_server.

SENDMAIL USING to_address

 from_address

 subject

 message server.

When sending an email with this command, you must be sure to supply a valid SMTP server name,
which is the name of your sending mail server. CobolScript will then use this server to forward the
email to the recipient.

 CobolScript® Developerôs Guide Page 95

Using CobolScript to Transmit Files

Within HTML, you can provide links to files that can be downloaded by using the anchor tag (), but if you do this your users will be able to see the location of the file on your server
when they view your HTML source. If you want to hide the location of your files and regulate who
downloads files from your site, you can build a CobolScript program to directly send the file to the
userõs web browser.

Figure 7.4 ð The email.cbl sample application as seen in Netscape.

Page 96 CobolScript® Developerôs Guide

CobolScript can be used to send a file to a client web browser. This is accomplished by sending the
appropriate MIME header and then using either the DISPLAYFILE or DISPLAYASCIIFILE
commands, depending on whether the file is binary or ASCII text. The user will be presented with a
òSave Aséó dialog box like the one in Figure 7.5, and will be allowed to save the file.

To use DISPLAYFILE or DISPLAYASCIIFILE, you should first build a program that displays a
form that a user will submit when he wants to download a file. Within this form, specify the
CobolScript program that will use the appropriate command to transmit the file. Typically this form
will contain a submit button, and possibly some additional fields that you will use to validate the user,
as in the following:

<FORM ACTION=ò/cgi- bin/co bolscript.exe?down.cblò METHOD=òPOSTò>

<INPUT TYPE=òhiddenò NAME=òuser_idò VALUE=òmd837653 ñ>

<INPUT TYPE=òhiddenò NAME=òpassword_idò VALUE=ò83fFrR ñ>

<INPUT TYPE=òhiddenò NAME=òfileò VALUE=òbudgetfile ñ>

<INPUT TYPE=òSubmitò VALUE=òDownloadò>

</FORM>

When this form is submitted, it will run the program you specify in the ACTION attribute of the
FORM tag (down.cbl in this example). Your program can then accept authentication information
and decide whether to transmit the file to that particular user based on this information. If you
choose to not send the file, you can simply display an error page instead.

After you have validated the authentication information, you can begin transmitting the file to the
user. There are two steps to this process. First, you will need to display a special MIME header. This
mime header is what prompts the userõs web browser to show the òSave Asó dialog box. The file
name that you use in your MIME header will be the default file name in the òSave Asó dialog box. It
is very important that the file size in your MIME header matches the exact file size of the file you
wish to transmit; in bytes. If it doesnõt, your file will not be transmitted correctly to the user.

Figure 7.5 ð The Save Asé dialog box.

 CobolScript® Developerôs Guide Page 97

After you have displayed the appropriate MIME header, you can use the DISPLAYFILE or
DISPLAYASCIIFILE statement. This will transmit the contents of the file to the clientõs web
browser after he selects the òSaveó button from the òSave Aséó dialog.

Hereõs a CobolScript code example with the appropriate MIME header and the DISPLAYFILE
statement (DISPLAYASCIIFILE could be substituted for DISPLAYFILE below if the file to be
transferred is a text file):

MOVE `budget.xls` to xfer_filename

MOVE `octet - stream` to xfer_method

MOVE 420000 TO xfer_filesize

DISPLAY `Content - type: application/` & xfer_method.

DISPLAY `Content - Disposition: inline; filename=` & xfer_filen ame.

DISPLAY `Content - Description: ` & xfer_filename.

DISPLAY `Content - Length: ` & xfer_filesize.

DISPLAYLF.

DISPLAYFILE download_filename.

By using this technique, you can regulate downloads, and audit which users download your files. You
can also build custom text files that will be sent to your users by displaying a MIME header and then
displaying individual lines, one line at a time. If you do this, make certain that the amount of data you
send matches the Content-Length specified in your MIME header.

Embedding JavaScript in CobolScript Programs

In some cases, you may want to have a portion of your applicationõs processing take place on the
client machine (the browserõs computer). Client-side processing is useful for tasks like edit validations,
because user feedback can be more real-time, and can be provided to a user prior to his submitting a
form and reconnecting with the web server.

If you want to use client-side processing with CobolScript, we recommend you do it by embedding
JavaScript in the HTML displayed by your CobolScript programs. JavaScript is relatively independent
of browser manufacturer (it works with current versions of both Netscape® and IE®), runs on the
clientõs web browser, and is very useful for basic data validation and checking. By embedding
JavaScript-enriched HTML in your CobolScript applications, you can also reduce network traffic
because checks can be performed on the data before it is submitted to the web for processing. If
youõre interested in using JavaScript, a pretty good (and reasonably priced) book for beginners is
JavaScript for the World Wide Web, available from Peachpit Press.

Page 98 CobolScript® Developerôs Guide

Some situations where you might want to take advantage of JavaScript are those that require form

fields to be populated or data validation of numeric and alphabetic fields. Figure 7.6 provides an
example of a message box generated by JavaScript upon a failed data validation.

The JavaScript function that displays this message box is listed below. It is a small function and can
be easily embedded into a CobolScript program that displays HTML to a web browser.

function check_fields(form) {

 if

 (form.first_name.value==òò||escape(form.first_name.value).match(ñ%ò)

 != null){

 alert(ñYou must enter an alphabetic first name.ò);

 form.first_name.focus();

 form.first_name.select();

 return false;

 }

}

CobolScript lends itself very well to displaying web pages, primarily because the nature of group-level
data items allows entire HTML code segments to be isolated in your program (or in copybooks) in
simple variable definitions. Because of this, you can create group items comprised of FILLER
variables that contain your JavaScript code, and then just display the group level data item. By doing
this, you can preserve the visual layout of your JavaScript code, and it will be relatively easy to debug
from within your CobolScript program.

Following is an example of a group item named web_page_header that contains our JavaScript code
from above:

1 web_page_header.

 5 `Content - type: text/html`.

 5 FILLER PIC X VALUE LINEFEED.

 5 `<HTML><HEAD><TITLE>Validate</TITLE>`.

 5 FILLER PIC X VALUE LINEFEED.

 5 `<SCRIPT LANGUAGE=òJavaScriptò>`.

 5 `<! ðHide script from old browsers`.

 5 ` function check_fields(form) {`.

 5 ` if (form.first_name.valu e == ñò`.

 5 ` || escape(form.first_name.value).match(ñ%ò) !=null){`.

 5 ` alert(ñYou must enter an alphabetic first name.ò);`.

Figure 7.6 ð JavaScript message box.

 CobolScript® Developerôs Guide Page 99

 5 ` form.first_name.focus();`.

 5 ` form.first_name.select();`.

 5 ` return false;`.

 5 ` }`.

 5 ` }`.

 5 ` // End script hiding -- >`.

 5 `</SCRIPT>`.

Letõs assume that we saved this variable definition, by itself, as a text file with the name
HEADER.CPY. Then, this header and JavaScript are freely available to any CobolScript program,
and including this file in any CobolScript programõs variable definition is just a matter of using the
COPY or INCLUDE statement to reference the copybook in your program code, like this:

COPY `HEADER.CPY`.

1 other_stuff PIC 99.

.

.

.

Now, the header data can be displayed with this small piece of code:

DISPLAYLF web_page_header.

When this statement executes, all of the variables that comprise web_page_header above will be
printed to standard output, which in this case means theyõll be sent to the requesting clientõs browser
window.

Breaking a web page document into separate group-level data items in this manner can make it very
easy to maintain, and using copybooks to store these items can be a real timesaver when modifications
to the group items have to be made.

Page 100 CobolScript® Developerôs Guide

 CobolScript® Developerôs Guide Page 101

Programming Techniques and

Advanced CobolScriptÈ Features

n this chapter, we discuss the technique of modular program design, provide some detailed
information on manipulating CobolScript variables using the MOVE statement, and discuss
some advanced features that make CobolScript a truly unique programming language.

Designing a Modular Program

Modular programming is a way of organizing your program code to make the program easier to
develop, understand, and maintain. A modular program is organized into paragraphs of code called
modules. Modules are broken down into lines of code that perform one function or several closely
related functions.

Modules are defined by paragraph names in the body of your CobolScript program. The names of
your modules must start in column 8 and must be less than 80 characters in length. Your module
names should also be descriptive, meaning, a module name should describe that moduleõs function. It
is also helpful to put a comment block right immediately before the module name. This should be a
short description that a programmer can easily read in order to understand what the module does, and
how it does it.

A program should be designed in a hierarchical fashion. Splitting a program up into modules
facilitates the partitioning of logic into individual components that are easy to code and maintain. A
program module should be as short as possible to perform a specific function in an independent
manner. A good guideline is that a module should not be longer than one page of code.

To demonstrate the concept of modular programming we will create a program that displays a web
page. The requirements of our programs are as follows:

¶ Print a header for our web page

¶ Print the body of our web page

¶ Print a footer for our web page

Chapt er

8

I
I C O N K E Y

Ā Important point

Page 102 CobolScript® Developerôs Guide

Figure 8.1 ð Top-down design.

The requirements of our program can be easily broken down into a hierarchy. The hierarchy for our
program is illustrated in Figure 9.1. This hierarchy can then be transformed into modules. We have
named our modules relative to their function. They are as follows:

¶ MAIN

¶ PRINT-HEADER

¶ PRINT-BODY

¶ PRINT-FOOTER

MAIN is the main program module. It will call each of the three modules in sequence in order to
display a simple web page with a horizontal rule at the top, the word òDeskware, Incó formatted and
centered in the page, and a horizontal rule at the bottom of the page.

The PERFORM statement controls the flow of the program. We PERFORM each of the three
modules and then terminate program flow with the GOBACK statement. Below is a partial listing of
our program (the sample program PAGE.CBL):

 MAIN.

 PERFORM PRINT- HEADER.

 PERFORM PRINT- BODY.

 PERFORM PRINT- FOOTER.

 GOBACK.

**

* MODULE: PRINT - HEADER

* Prints header info for the html document.

 PRINT- HEADER.

 DISPLAYLF `Content - type: text/html`.

 DISPLAY LINEFEED.

 DISPLAY `<HTML><BODY>`.

 DISPLAY `<HR>`.

 DISPLAY `

`.

************************************** *****************

* MODULE: PRINT - BODY

* Prints body of HTML document

 PRINT- BODY.

 1 company_name PIC X(n) VALUE `Deskware, Inc`.

 CobolScript® Developerôs Guide Page 103

 DISPLAY `<CENTER>`.

 DISPLAY `` & company_name & ``.

 DISPLAY `</CENTER>`.

* MODULE: PRINT - FOOTER

* Prints trailer info for the HTML document

 PRINT- FOOTER.

 DISPLAY `

`.

 DISPLAY `<HR>`.

 DISPLAY `</BODY></HTML>`.

This program is very simple and is meant only to illustrate modularity. It could have been written by
using only one module instead of four. However, as your programs increase in size and complexity,
modularity becomes increasingly important. Why? Quite simply, most of us arenõt really capable of
conceptualizing the intricate details of very large programs in our minds all at once. For this reason,
dividing your code into modules allows conceptualization at different hierarchical levels, so that you as
well as others will have an easier time creating and maintaining your code. Even when there is not
much code in your program, dividing the logic up into modules can make it more readable. Also,
modular code can easily be broken apart into separate copybook files later, allowing you to reuse
particular pieces of code across programs using the COPY statement.

Manipulating CobolScript Variables

Basic Moves

Basic moves copy data from one variable to another or from a literal to a variable. The value on the
left will be copied to the variable on the right:

MOVE `Deskware` TO name_var.

MOVE compnay_var TO name_var.

Segmented Moves

Segmented moves copy pieces of variables or segments to target variables (also known as a reference
modification). The segmented move uses a variable name, a segment starting position, and length. It
has the form of variable_name(start : length):

MOVE name(1:4) TO new_name.

MOVE `Desk` TO name(5:4).

Segmented moves can only be used on elementary items and are not allowed on group items. You
can accomplish this same type of manipulation by moving a group item to another group item. The
elementary items that are part of the target group item would simply have to have different picture
lengths for each variable.

Ā

Page 104 CobolScript® Developerôs Guide

Elementary Item to Group Item Moves

Moving an elementary item to a group item is a great technique for parsing data. For example, if you
have a variable that contains a 12 digit phone number you can parse it easily by moving it to a group
item:

1 input_field PIC X(12).

1 phone_number.

 5 area_code PIC X(03).

 5 FILLER PIC X.

 5 prefix PIC X(03).

 5 FILLER PIC X.

 5 exchange PIC X(03).

MOVE input_field TO phone_number.

After this move has been executed, the three parts of the phone number will be placed in the variables
area_code, prefix, and exchange.

Group Item to Elementary Item Moves

Moving a group item to an elementary item is a good way to build the contents of a variable. For
example, by moving phone_number to input_field we can format a variable:

1 output_field PIC X(12).

1 phone_number .

 5 `(`.

 5 area_code PIC X(03).

 5 `)`.

 5 prefix PIC X(03).

 5 ` - `.

 5 exchange PIC X(03).

MOVE `813` TO area_code.

MOVE `555` TO prefix.

MOVE `2494` TO exchange.

MOVE phone_number TO output_field.

The variable output_field will now have a value of (813)555 - 1234

Please refer to the sample program MOVE.CBL for more examples of moving variables.

Advanced CobolScript Features

These advanced CobolScript features are meant to add flexibility to your coding. Each is some
feature not normally present in computer languages that are similar to CobolScript.

 CobolScript® Developerôs Guide Page 105

Expression Evaluation within the DISPLAY statement

It is possible to pass raw expressions to the DISPLAY statements as arguments. These expressions
will be evaluated by the DISPLAY statement, and the result will display in a CobolScript-defined
numeric format, with five post-decimal digits. Thus, the following is perfectly acceptable:

MOVE 2 TO radius.

DISPLAY `Area = ` & PI(0) * (radius^2).

And this will print the following to standard output:

Area = 12.56637

DISPLAYLF has this same capability.

Expressions as Segment Arguments and Occurs Clause Variable Arguments

Expressions can also be used as arguments to positional string references (also known as reference
modification or segments), and as arguments to occurs clause variables, so long as each evaluates to an
integer that is within the appropriate range. For example, the following code block that uses an
expression in a positional string reference is a valid one (albeit a bit unusual):

1 var1 PIC X(30) VALU E `ABCDEFGHIJKLMNOPQRSTUVWXYZ1234`.

1 counter_var PIC 999.

MOVE 24 TO counter_var.

DISPLAY `var1(2:24) = ` & var1(((counter_var/6)/2):counter_var - 1+1).

DISPLAY `var1(2:24) = ` & var1(2:24).

The screen output for the above code block will be the following.

var1(2:24) = BCDEFGHIJKLMNOPQRSTUVWXY

var1(2:24) = BCDEFGHIJKLMNOPQRSTUVWXY

Both of these values are 24 characters long, beginning with the second character, of var1, since
positional string referencing is always of the form:

string_variable_name(start_ position : length)

The following code block that uses an expression in an OCCURS clause variable is also valid:

1 var1 OCCURS 4 TIMES PIC XX.

1 counter_var PIC 999.

MOVE 24 TO counter_var.

MOVE `WW` TO var1(counter_var/12).

DISPLAY `var1(2) = ` & va r1(ROOT ((counter_var/6)^2, 4)).

DISPLAY `var1(2) = ` & var1(2).

Page 106 CobolScript® Developerôs Guide

The screen output for this code will be the following:

var1(2) = WW

var1(2) = WW

Intelligent Variable Parsing

As we mentioned briefly in the Expressions and Conditions section of Chapter 3, CobolScript
Language Constructs, it is not necessary to separate individual expression components with spaces, so
long as a parenthesis or simple (non-word) operator separates the variable or numeric components.
However, since CobolScript allows dashes in variable names, and the symbol for the dash is the same
symbol as the minus sign (-), expressions can be constructed where their meaning is uncertain. Take
this expression, for example:

(WS- VAR- 1+2)

If four variables have been defined in a program, one named WS, one named VAR, one named WS-
VAR, and the other named WS-VAR-1, itõs unclear which of the following is meant:

¶ The value in the variable WS-VAR-1, plus 2

¶ The value in the variable WS-VAR, minus 1, plus 2

¶ The value in WS, minus the value in VAR, minus 1, plus 2

The answer, for CobolScript, is that the first meaning (with the longest variable name) is always
selected, if that variable name is defined. CobolScript uses an intelligent variable parsing algorithm to
determine the value of a term like WS-VAR-1, and this algorithm prioritizes exact variable name
matches over component subtraction. If WS-VAR-1 was not a defined variable, but WS-VAR, WS,
and VAR still were, the second meaning above would then take precedence. Only in the case where
WS-VAR-1 and WS-VAR had both not been defined, but WS and VAR had, would the expression
evaluate to the third meaning.

As a result of this variable parsing, error messages related to undefined variables will sometimes name
the undefined variable misleadingly. For example, if none of the above variables were defined, but you
attempted to use the expression above in a statement, the error message would state that the variable
WS had not been defined, rather than WS-VAR or WS-VAR-1. This is again because of the parsing
algorithm; CobolScript attempts to find matches for smaller and smaller terms separated by dashes;
when the term cannot be deconstructed any further (in this case, at the point when the term is WS)
CobolScript stops and issues an error message. Since the line number of the error and the error
message (indicating that a variable is undefined) are still correct, correcting this error is simply a matter
of determining the variable name that you want defined, rather than what is indicated in the error
message, and properly define it.

Dynamic File Naming

If you process many files of the same format and layout within a single program, you know that
processing each file individually can be tedious and lengthy. To avoid this, you must reuse your file
processing statements by placing them within a loop; but for this to work, the file name argument to
your file processing statements, including the FD statement, must be dynamic. For this reason, we
use the term dynamic file naming.

Ā

 CobolScript® Developerôs Guide Page 107

To dynamically name files, create a variable that will hold your file name, and then wait to create the
FD for the file until after youõve generated your file name. This works because there isnõt an imposed
order on statements in CobolScript programs. For instance:

* file name gldi variable definition

 1 file_name_gldi.

 5 FILLER PIC X(n) VALUE `file`.

 5 counter PIC 99.

 5 FILLER PIC X(n) VALUE `.dat`.

* file record definition

 1 file_record.

 5 field_1 PIC 99.

 5 field_2 PIC XX VALUE `AB`.

 PERFORM VARYING counter FROM 1 BY 1 UNTIL counter > 8

 FD file_name_gldi RECORD IS 4 BYTES

 OPEN file_name_gldi FOR WR ITING

 PERFORM VARYING field_1 FROM 1 BY 1 UNTIL field_1 > 10

 IF field_1 > 5

 MOVE `CD` TO field_2

 END- IF

 WRITE file_record TO file_name_gldi

 END- PERFORM

 CLOSE file_name_gldi

 END- PERFORM.

The example above uses a counter variable to manipulate a numeric component of the dynamic file
name, but the file names could also have been read from a file whose records contained the file
names. The file names could also have been stored in an OCCURS variable, and the OCCURS index
used as the counter variable to the outer PERFORM VARYING loop body.

Refer to the last code example of the next section for a more complex file naming example that makes
use of the EXECUTE statement.

Dynamic Statement Creation and Execution

With most programming languages, the only dynamic components in a program at runtime are
variables that store some type of value or point to a memory address. These variables can be
examined and action taken based on their values, but the action itself (i.e., the code) must be created
prior to runtime, and remains static throughout program execution.

In contrast, certain artificial intelligence languages like Prolog also provide the means to execute code
statements that are created while the program is running. This is sometimes referred to as dynamic
programming, which roughly means that code statements that are created by a program can then be
executed by that same program.

CobolScript provides dynamic programming capability with the EXECUTE statement. The
following code, for instance, has the net effect of displaying the literal òHello, world.ó:

Page 108 CobolScript® Developerôs Guide

1 string_gldi.

 5 FILLER PIC X VALUE ACCENT.

 5 string_var PIC X(n) VALUE `Hello, world.`.

 5 FIL LER PIC X VALUE ACCENT.

EXECUTE `DISPLAY ` string_gldi.

In the above example, the EXECUTE statement has two arguments, `DISPLAY ̀and string_gldi.
Since string_gldi is a variable, the string that is actually processed by EXECUTE (and then directly
executed by the CobolScript engine) is:

DISPLAY `Hello, world.`.

This is because all variable values are substituted prior to EXECUTE processing. Properly
accounting for this substitution when using and understanding EXECUTE statements can be
challenging until you become used to coding in this manner; the following code, which generates the
same òHello, world.ó output, illustrates this well:

1 string_var PIC X(n) VALUE `Hello, `.

EXECUTE `DISPLAY ` ACCENT string_var ACCENT ` & ` ACCENT `world.`

 ACCENT.

Of course, neither of the two examples above really demonstrates the utility of EXECUTE, since
both execute a static DISPLAY statement that could have just as easily been coded directly. To
uncover the real value of EXECUTE, weõll look at a more involved example that dynamically changes
the name of the source variable in a MOVE statement that is the variable argument to EXECUTE:

1 move_exec.

 5 `MOVE line_`.

 5 num_position PIC 99.

 5 ` TO license_line_item`.

1 line_01 PIC X(7) VALUE `line111`.

1 line_02 PIC X(7) VALUE `line222`.

1 line_03 PIC X(7) VALUE `line333`.

1 line_04 PIC X(7) VALUE `line444`.

1 line_05 PIC X(7) VALUE `line555`.

1 license_line_item PIC X(7).

PERFORM UNTIL num_position = 5

 ADD 1 TO num_position

 DISPLAY `move_exec = ` & ACCENT & move_exec & ACCENT

 EXECUTE move_exec

 DISPLAY `license_line_item = ` & ACCENT & license_line_item & ACCENT

END- PERFORM.

GOBACK.

 CobolScript® Developerôs Guide Page 109

In this example, multiple MOVE statements are combined into a single EXECUTE statement inside
a loop. The source variable component of the MOVE is dynamically changed from line_01 to
line_02, line_03, line_04, and then line_05 because a portion of the source variable name is actually
the value of the loop counter variable. This code produces the following output:

move_exec = `move line_01 to license_line_item`

license_line_item = l̀ine111`

move_exec = `move line_02 to license_line_item`

license_line_item = l̀ine222`

move_exec = `move line_03 to license_line_item`

license_line_item = l̀ine333`

move_exec = `move line_ 04 to license_line_item`

license_line_item = l̀ine444`

move_exec = `move line_05 to license_line_item`

license_line_item = l̀ine555`

In the previous section, we examined a simple method to dynamically name files. If the file names
vary considerably, however, naming them becomes more difficult than assigning a counter variable.
An OCCURS variable can be used to store the different filenames, and then the OCCURS index used
to retrieve each file name, but the OCCURS elements would still have to be assigned using individual
MOVE statements. Using a text file to store and access the file names may work well for a large
number of file names, but it can be overkill for a more modest number.

If the number of file names is relatively small, and you prefer keeping the list of file names inside the
program that processes them, you can create a pseudo-array group item whose elementary members
are the file names that you intend to process. Then, use the EXECUTE statement to perform a
dynamic MOVE in order to reassign the file name variable, as in the following:

 1 file_name_list.

 5 file_name_01 PIC X(n) VALUE `first.dat`.

 5 file_name_02 PIC X(n) VALUE `second.dat`.

 5 file_name_03 PIC X(n) VALUE `third.dat`.

 5 file_name_04 PIC X(n) VALUE `fourth.dat`.

 5 file_name_05 PIC X(n) VALUE `fifth.dat`.

 5 file_name_06 PIC X(n) VALUE `sixth.dat`.

 5 file_name_07 PIC X(n) VALUE `seventh.dat`.

 5 file_name_08 PIC X(n) VALUE `eighth.dat`.

* file name target variable definition

 1 file_name_var PIC X(12).

* file record definition

 1 file_record.

 5 field_1 PIC 99.

 5 field_2 PIC XX VALUE `AB`.

* move statement to be executed

 1 move_exec.

 5 `MOVE file_name_`.

Page 110 CobolScript® Developerôs Guide

 5 counter PIC 99.

 5 ` TO file_name_var`.

 PERFORM VARYING counter FROM 1 BY 1 UNTIL counter > 8

 EXECUTE move_exec

 FD file_name_var RECORD IS 4 BYTES

 OPEN file_name_var FOR WRITING

 PERFORM VARYING field_1 FROM 1 BY 1 UNTIL field_1 > 10

 IF field_1 > 5

 MOVE `CD` TO field_2

 END- IF

 WRITE file_record TO file_name_var

 END- PERFORM

 CLOSE file_name_var

 END- PERFORM.

 GOBACK.

 CobolScript® Developerôs Guide Page 111

CS Professional CodeBrowserÊ,

AppMakerÊ, and Control Panel

n addition to LinkMakerÊ (discussed in appendixes G and H), CobolScript Professional Edition
comes with several features not present in the Standard Edition that combine to make CS
Professional a complete, enterprise-ready development solution. Using these additional features,
you can create royalty-free, stand-alone executables from your CobolScript programs, browse

your code using a colorizing utility, and administer your CobolScript environment.

Feature Requirements

CodeBrowserÊ and the CobolScript Control Panel both require that you have web server software
installed on your CS Professional-resident computer, and that the CobolScript engine be placed in
your web serverõs cgi-bin directory. AppMakerÊ can be run without a web server, using a specific
command line option, or with a web server by using the Control Panel.

Additionally, the Control Panel can only be run from the machine on which CobolScript Professional
and your web server are installed. This is done for security reasons.

Using CodeBrowserÊ

CodeBrowserÊ is a code colorizing and viewing utility. CodeBrowserÊ displays a colorized version of
your program in a browser window, with a line number beside each line of code to assist you with the
debugging process. Comments, keywords, and literals are each distinctly colorized in the browser.

Chapter

9

I

Page 112 CobolScript® Developerôs Guide

Copybooks that are included in your program appear as inline code in the CodeBrowserÊ listing; they
are differentiated with a gray background. Including copybook code in the CodeBrowserÊ listing
helps to provide a cohesive view of your entire program, and more meaningful code printouts and
documentation.

The .csaccess File

In order for you to use CodeBrowserÊ, a file named .csaccess must exist in your web serverõs cgi-bin
directory. CodeBrowserÊ program listings may only be viewed for those CobolScript programs that
have an entry in the .csaccess file. The contents of this file are the names (and relative paths, if any) of
the programs that you wish to be made available for browsing, with a linefeed separating each
program name. However, rather than creating and editing this file directly, you can use the Control
Panel to administer .csaccess. See the section on the Control Panel later in this appendix for more
information.

Anyone with access to your web site will be able to view CobolScript programs that have been added
to the .csaccess file. This feature is useful for programming teams in different locations that are sharing
development and test servers; these teams only have to enter the appropriate URL in their web
browser to see a CobolScript program that resides on the server (see URL section below).

Figure 9.1 ð Using CodeBrowser to browse a program that contains a copybook.

 CobolScript® Developerôs Guide Page 113

Before going live with an application, you should directly edit the .csaccess file and remove any entries
for programs that you do not wish be made publicly visible with CodeBrowserÊ. You can also simply
delete the contents of the file, which will prevent browse access on all programs. Anyone attempting

to browse a program listing will be presented with a ôBrowse Access not allowedõ window as shown in
Figure 9.2.

Running CodeBrowserÊ from a URL

Once the .csaccess file has been configured, just enter the following URL (modified for your
environment and program name) in your web browser to examine a program using CodeBrowserÊ:

http://<server - name>/cgi - bin/cobolscript.exe? - hlisting+<program - name>

Here, server-name refers to the host name or IP address of your CobolScript/web server machine, and
program-name refers to the full name and relative path, if required, of your CobolScript program. In the
following example, CodeBrowser will bring up a listing for the sample program mail.cbl on the server
www.cobolscript.com, so long as mail.cbl is a valid entry in .csaccess:

http://www.cobolscript.com/cgi - bin/cobolscript.exe? - hlisting+mail.cbl

Of course, you can also link to this form of URL from other web pages or from HTML output of
CobolScript programs. An HTML link for the program above could look like the following:

<A HREF=òhttp://www.cobolscript.com/cgi- bin/cobolscript.exe? -

hlisting+mail.cblò>View Mail Program

CodeBrowserÊ can also be run from the CobolScript Control Panel. See the section on the Control
Panel later in this appendix for more information.

Figure 9.2 ð CodeBrowser òBrowse Access not allowedó screen.

Page 114 CobolScript® Developerôs Guide

Building Executables with AppMakerÊ

CS Professional provides the capability to create stand-alone executables from CobolScript programs
using AppMakerÊ. This gives you the opportunity to sell or redistribute your CobolScript
applications without disclosing your code, and without requiring that your customers purchase their
own CobolScript license from Deskware (as is the case with CobolScript Standard Edition). You
might also choose to build executables for an internet system, and then place those executables on
your production web server, rather than placing raw code files on a production machine.

Executables can be built directly from the command line with the following syntax:

cobolscript.exe - b <program - name>

If your program successfully loads, an executable will be created from it and placed in the working
directory. For example, typing the following will create an executable named test.exe in the working
directory:

cobolscript.exe - b test.cbl

You can also build executable files by typing a specific URL into your web browser. This URL has
the following format.

http://<server - name>/cgi - bin/cobolscript.exe? - b+<program - name>

Here, server-name refers to the host name or IP address of your CobolScript/web server machine, and
program-name refers to the full name (and relative path, if required) of your CobolScript program. In
the following example, an executable will be created for write.cbl on the server 127.0.0.1:

http://127.0.0.1/cgi - bin/cobolscript.exe? - b+write.cbl

After the executable has been built, you will a web page similar to Figure 9.3. You can run the
executable by clicking on the hyperlink that appears on the page.

Figure 9.3 ð Building an AppMaker executable from a web browserõs URL.

http://127.0.0.1/cgi-bin/cobolscript.exe?-b+write.cbl

 CobolScript® Developerôs Guide Page 115

AppMakerÊ can also be run from the CobolScript Control Panel. See the section on the Control
Panel later in this appendix for more information.

Using the CobolScript Control Panel

The CobolScript Control Panel is an administrative utility that is available only in CS Professional.
The Control Panel provides access to other features of CS Professional, giving you the ability to run
your CobolScript programs, browse your code, and build executables, all from within a visual
environment.

In order for the Control Panel to work correctly, you must have web server software installed on your
CS Professional computer, and the CobolScript engine must be located in the web serverõs cgi-bin
directory. Also, for security reasons, the Control Panel may only be started from the machine on
which CS Professional is installed.

To access the Control Panel, start a web browser and type in the following URL:

http://<server - name>/cgi - bin/cobolscript.exe

Here, server-name refers to the host name or IP address of your CobolScript/web server machine.

Most computers are configured with a ôloopbackõ value to refer to their own IP address. Since this
address is often 127.0.0.1, the following URL will start the Control Panel on most web server
machines with CobolScript installed in the cgi-bin directory:

http://127.0.0.1/cgi - bin/cobolscript.exe

Once youõve submitted the appropriate URL, the CobolScript Control Panel will appear in a new
window (see Figure 9.4). The following subsections explain Control Panel functionality.

Figure 9.4 ð CobolScript Control Panel.

http://127.0.0.1/cgi-bin/cobolscript.exe

Page 116 CobolScript® Developerôs Guide

Running a CobolScript program from the Control Panel

To run a CobolScript program from the Control Panel, enter the name of the program in the input
box next to the Run button, or select the program by clicking on the Browse button to browse your
filesystem. Once youõve selected a program file, click Run to execute the program. This will allow you
to run any CobolScript program that is in your web serverõs cgi-bin directory and that is designed to
run through a web server (e.g., it displays correct MIME header information and HTML output).

Accessing CodeBrowserÊ from the Control Panel

To run CodeBrowserÊ from the Control Panel, enter the name of the program in the input box next
to the Show Me button, or select the program by clicking on the Browse button to browse your
filesystem. Once youõve selected a program file, click Show Me. This will bring up a new window that
contains a CodeBrowserÊ listing of your program. Note that the program name must be in the
.csaccess file for browsing to be permitted; see below for instructions on administering this file through
the Control Panel.

Administering File-level CodeBrowserÊ Privileges

CodeBrowserÊ program listings may only be viewed for those CobolScript programs that have an
entry in the .csaccess file. You can add these entries to .csaccess by clicking on the Go button from the
Control Panel, which will open a new window called ôAdminister Public CodeBrowser File Accessõ
(see Figure 9.5).

In this new window, you can add program files to .csaccess by entering the name of the file in the input
box or by selecting the program by clicking on the Browse button, and then clicking on the Add File
button. After youõve finished adding files, simply close the window.

To remove public browsing capabilities on a program, you must directly edit the .csaccess file and
manually remove the entry for the program you want to restrict. You can also delete the .csaccess file,
which will prevent browse access on all programs.

Figure 9.5 ð Administering CodeBrowser privileges.

 CobolScript® Developerôs Guide Page 117

Using AppMakerÊ from the Control Panel

To use AppMakerÊ to build an executable from the Control Panel, enter the name of the program in
the input box next to the Build button, or select the program by clicking on the Browse button to
browse your filesystem. Once youõve selected a program file, click Build. A popup window will
appear that shows that the executable was successfully built. Provided your application is designed for
the web, you can then run the executable from the popup by clicking on the hyperlink. See Figure
9.6.

Figure 9.6ð Creating an executable with AppMaker from the Control Panel.

Page 118 CobolScript® Developerôs Guide

Language Reference

his appendix gives a detailed description of the command syntax used by CobolScript. For
more information on specific components of CobolScript programs other than commands,
such as variables, literals, and expressions, see Chapter 3, CobolScript Language Constructs.

Usage for most of the commands listed in this appendix is demonstrated in one of the sample
programs included with CobolScript. The sample programs are available for download from the
Deskware Registered Developer Home Page ð just login at
www.cobolscript.com/cobolscript.exe?login.cbl using your Registered Developer ID and download
the sample-programs-only file. A complete listing of these sample programs appears in Appendix D,
Sample CobolScript Program Files.

Syntax and Description of Commands

Below is a legend that describes how the commands are documented.

Command: Command name

Syntax Example syntax for a command.

Variables and literals are enclosed in greater than/less than signs, e.g., <variable>

Optional syntax is enclosed in brackets, e.g., [ROUNDED]

Description: Detailed description of what the command does

Example Usage: Example illustrating the actual use of the command

See Also: Other commands that are related to this command

Sample Program: Filename of sample program that demonstrates the use of this command.

Figure A.1 ð The format of the command reference.

Appendix

A

T
I C O N K E Y

1 File I/O

+ Email

https://www.cobolscript.com/cobol.exe?login.cbl

 CobolScript® Developerôs Guide Page 119

ACCEPT

Command: ACCEPT

Syntax: Variant 1:

ACCEPT <accept-variable> FROM DATE.

ACCEPT <accept-variable> FROM DAY.

ACCEPT <accept-variable> FROM DAY-OF-WEEK.

ACCEPT <accept-variable> FROM TIME.

Variant 2:

ACCEPT <accept-variable> FROM KEYBOARD [PROMPT <prompt-string>].

Variant 3:

ACCEPT DATA FROM WEBPAGE.

Description: The ACCEPT command has three variants:

Variant 1:

The basic variant of ACCEPT can be used to populate a numeric accept-variable with

one of a number of variations of the current system date/time. The formats of the data

returned to accept-variable by each of the date/time keywords are as follows:

Keyword Format Mask
DATE DDMMYYYY , where DD is the day of the month, ranging from 01

 to 31, MM is the month of the year, ranging from 01 to 12, and YYYY

 is the four-digit year.

DAY YYDDD , where YY is a two-digit year code, and DDD is a day of the

 year ranging from 001 to 366.

DAY-OF-WEEK d, where d = 0 means Sunday, d = 1 means Monday, etc.

TIME hhmmss, where hh corresponds to hour of the day and ranges from

 00 to 23, mm corresponds to minutes past the hour and ranges from

 00 to 59, and ss corresponds to seconds past the minute and ranges

 from 00 to 59.

Variant 2:

ACCEPT <accept-variable> FROM KEYBOARD can be used to read a line from the

standard input stream (normally the KEYBOARD) and store it in an alphanumeric

accept-variable.

When an ACCEPT FROM KEYBOARD command is processed, program flow is

suspended until a line of keyboard input has been received. If the PROMPT clause is

specified, prompt-string will display to standard output prior to the cursor prompt.

Program execution is resumed when a line of standard input is terminated with a linefeed

character; however, the linefeed character is not included in accept-variable. If the

standard input stream is greater than the length of accept-variable, the data will be right-

truncated.

This variation of the ACCEPT command is also useful for getting raw, unparsed CGI

(Common Gateway Interface) data from web pages. This is necessary for retrieving data

from GET-method CGI form submissions, or for examining the raw input stream from

POST-method submissions. Normally, however, ACCEPT DATA FROM WEBPAGE

should be used for POST-method data retrieval - see below for more information.

Variant 3:

The ACCEPT DATA FROM WEBPAGE statement will accept CGI data from an

HTML form that was submitted using the POST method, parse it, and place the contents

in corresponding CobolScript variables. For this statement to work successfully, use the

same field names in the receiving CobolScript program as are in the submitting POST-

method CGI form. The ACCEPT DATA FROM WEBPAGE statement will then

populate these CobolScript variables with the values that are in the incoming, like-named

CGI variables; no additional parsing logic is required.

Page 120 CobolScript® Developerôs Guide

Command: ACCEPT

Refer to Chapters 6 and 8 for a more in-depth discussion of ACCEPT DATA FROM

WEBPAGE.

Example Usage: Variant 1:
ACCEPT date FROM DATE.

ACCEPT day FROM DAY.

ACCEPT day_of_week FROM DAY - OF- WEEK.

ACCEPT time FROM TIME.

Variant 2:
ACCEPT stdin_var FROM KEYBOARD PROMPT `Enter input: `.

ACCEPT raw_buffer FROM KEYBOARD.

Variant 3 (assumes two incoming CGI variables named cust_nm and order_nbr):
1 cust_nm PIC X(50).

1 order_nbr PIC 9(10).

ACCEPT DATA FROM WEBPAGE.

Sample Program: ACCEPT.CBL

ACCEPTFROMSOCKET

Command: ACCEPTFROMSOCKET

Syntax: ACCEPTFROMSOCKET USING <socket-number> <accept-socket-number>.

Description: ACCEPTFROMSOCKET creates a new TCP/IP socket connection on accept-socket-

number when a remote machine attempts to connect using a particular socket socket-

number. Socket-number refers to the socket that has already been created in order to

listen for a connection; when a remote computer attempts to connect on that socket, the

ACCEPTFROMSOCKET command will accept the connection and create a newly

connected socket on accept-socket-number.

The ACCEPTFROMSOCKET command will cause CobolScript to suspend program

flow until a socket connection is successfully established with a remote computer.

After the new socket connection has been established, socket-number is freed and is

ready to listen for another connection.

This command is conventionally used only on the machine that is considered to be the

server in two-way socket connections.

The TCP/IP return code and return message variables are populated with standard

TCP/IP return codes and messages after execution of this command. They can be

examined after command execution for error-trapping purposes.

See the Using TCP/IP Commands section of Chapter 6, Network and Internet

Programming Using CobolScript, for more information on using socket commands.

Example Usage: ACCEPTFROMSOCKET USING socket_num_var

 connctd_socket_num_var.

The ACCEPTFROMSOCKET command requires that the following TCP/IP variable

declarations be included in your program:

1 TCPIP - RETURN- CODES.

 5 TCPIP - RETURN- CODE PIC 9(07).

 5 TCPIP - RETURN- MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program with a COPY or

INCLUDE statement. This copybook includes these variable definitions.

 CobolScript® Developerôs Guide Page 121

Command: ACCEPTFROMSOCKET

See Also: BINDSOCKET

CLOSESOCKET

CONNECTTOSOCKET

CREATESOCKET

LISTENTOSOCKET

RECEIVESOCKET

SENDSOCKET

SHUTDOWNSOCKET

Sample Program: SERV.CBL

ADD

Command: ADD

Syntax: Variant 1:

ADD <number or variable> é TO <target-variable> [ROUNDED]

Variant 2:

ADD <number or variable> é TO <number or variable> GIVING <target-variable>

[ROUNDED]

Description: Variant 1 of the ADD statement is used to add one or more numeric literals and/or

numeric variables together, storing the result in the numeric target-variable. All literals

and variables are added together to produce the result, including the value of target-

variable prior to the addition.

Variant 2 of ADD is used to add one or more numeric literals and/or variables together,

with the result stored in a target-variable whose original contents are not considered in

the addition. Thus, if var has an initial value of 1, performing the operation:

 ADD 1 TO 1 GIVING var.

will place a value of 2, not 3, into var.

Both forms of ADD permit the use of the ROUNDED keyword, which rounds the target

variable, after computation, to the nearest integer.

Example Usage: Variant 1:
ADD 1 TO num_variable.

ADD 1 2 3 TO num_variable.

ADD var TO total.
ADD 1.11 2 var TO total ROUNDED.

Variant 2:
ADD value TO subtotal GIVING total.

ADD 9.99 value TO subtotal GIVING total ROUNDED

See Also: COMPUTE

SUBTRACT

MULTIPLY

DIVIDE

Sample Program: ADD.CBL

BANNER

Command: BANNER

Syntax: BANNER USING <banner-input> <banner-character-input>

Description: The BANNER command displays a Unix-style banner to the screen. The contents of

banner-input are the large characters of the banner; the contents of banner-character-

input are the component characters of the banner, which are the small characters used to

make the banner letters. If banner-character-input is equal to a single space (` ` or the

SPACE keyword), the component character of each large letter will be a smaller version

of itself, e.g.,

 BANNER USING `TEST` SPACE

Page 122 CobolScript® Developerôs Guide

Command: BANNER

will generate the following screen output:

TTTTTTT EEEEEEE SSSSS TTTTTTT

 T E S S T

 T E S T

 T EEEEE SSSSS T

 T E S T

 T E S S T

 T EEEEEEE SSSSS T

Example Usage: BANNER USING `TEST` `#`.

BANNER USING `TEST` ` `.

BANNER USING `TEST` SPACE.

BANNER USING banner_contents banner_char.

See Also: GETBANNER

Sample Program: BANNER.CBL

BINDSOCKET

Command: BINDSOCKET

Syntax: BINDSOCKET USING <socket-number> <port-number>.

Description: The BINDSOCKET command binds a socket socket-number to a specific TCP/IP port

port-number on the local machine. After this command is executed , the operating

system will associate port-number with socket-number.

This command is conventionally used only on the machine that is considered to be the

server in two-way socket connections.

The TCP/IP return code and return message variables are populated with standard

TCP/IP return codes and messages after execution of this command. They can be

examined after command execution for error-trapping purposes.

See the Using TCP/IP Commands section of Chapter 6, Network and Internet

Programming Using CobolScript, for more information on using socket commands.

Example Usage: BINDSOCKET USING socket_num _var port_num_var.

The BINDSOCKET command requires that the following TCP/IP variable declarations

be included in your program:

1 TCPIP - RETURN- CODES.

 5 TCPIP - RETURN- CODE PIC 9(07).

 5 TCPIP - RETURN- MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program with a COPY or

INCLUDE statement. This copybook includes these variable definitions.

See Also: ACCEPTFROMSOCKET

CLOSESOCKET

CONNECTTOSOCKET

CREATESOCKET

LISTENTOSOCKET

RECEIVESOCKET

SENDSOCKET

SHUTDOWNSOCKET

Sample Program: SERV.CBL

 CobolScript® Developerôs Guide Page 123

CALENDAR

Command: CALENDAR

Syntax: CALENDAR USING <year-input> <month-input>.

Description: The CALENDAR command displays a calendar for a given year year-input and month

month-input. The year-input and month-input should be numeric values; if they are

variables, their variable declarations must have numeric picture clauses. Any fractional

component to year-input or month-input will be ignored, e.g., a year-input of 1957.75

will be processed as 1957.

CALENDAR does not support pre-Julian calendar dates, i.e., any date prior to August

1752.

Example Usage: CALENDAR USING 2001 1.

CALENDAR USING year_var month_var.

See Also: GETCALENDAR

Sample Program: CALENDAR.CBL

CALL

Command: CALL

Syntax: CALL <system-command-literal | variable> <system-command-literal | variable>é .

Description: CALL is used to call a shell command. Essentially, system-command-literal or the

contents of variable are executed at the operating systemôs command prompt. Multiple

arguments may be specified for a CALL command, and group items may be used as

CALL arguments.

CALL is an extremely powerful and versatile command, so use caution when

implementing a program that uses CALL, especially when that program receives data

from web input or other unauthorized user input. Itôs generally inadvisable to perform a

CALL on any user input value that has not first been validated or examined by your

program, since CALL provides access to operating system commands.

Example Usage: Example with one literal argument:
CALL `dir *.txt`.

Example with one variable argument:
MOVE `ls *.tmp` TO system_command.

CALL system_command.

Example with one literal and one variable argument:
MOVE `*.cbl` TO wildcard_variable.

CALL `ls ïl ` wildcard_variable.

Example with gldi variable argument:
1 system_command.

 5 `ls`.

 5 ` *.tmp`.

CALL system_command.

Sample Program: CALL.CBL

CLOSE

Command: CLOSE

Syntax: CLOSE <filename>.

Description: The CLOSE command is used to close a text data file filename that was previously

opened with the OPEN statement. 1

1

Page 124 CobolScript® Developerôs Guide

Command: CLOSE

Example Usage: CLOSE `TEST.DAT`.

CLOSE test_file.

See Also: FD

OPEN

POSITION

READ

REWRITE

WRITE

Sample Program: IO.CBL

CLOSEDB

Command: CLOSEDB (CobolScript Professional Edition Only)

Syntax: CLOSEDB USING <return-code-variable>.

Description: The CLOSEDB command closes an open LinkMakerÊ database connection and

populates return-code-variable with an integer value of 1 (success) or 0 (failure). This

command is used after a connection has been established with a data source using the

OPENDB command.

See Appendixes G and H for more information about configuring and using

LinkMakerÊ.

Example Usage: CLOSEDB USING ret_code.

See Also: OPENDB, EXEC SQL

Sample Program: SQL.CBL

CLOSESOCKET

Command: CLOSESOCKET

Syntax: CLOSESOCKET USING <socket-number>

Description: The CLOSESOCKET command closes the specified TCP/IP socket connection socket-

number. It should only be called after the SHUTDOWNSOCKET command has been

issued, to ensure a graceful socket termination.

The TCP/IP return code and return message variables are populated with standard

TCP/IP return codes and messages after execution of this command. They can be

examined after command execution for error-trapping purposes.

See the Using TCP/IP Commands section of Chapter 6, Network and Internet

Programming Using CobolScript, for more information on using socket commands.

Example Usage: CLOSESOCKET USING socket_num_var.

The CLOSESOCKET command requires that the following TCP/IP variable declarations

be included in your program:

1 TCPIP - RETURN- CODES.

 5 TCPIP - RETURN- CODE PIC 9(07).

 5 TCPIP - RETURN- MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program with a COPY or

INCLUDE statement. This copybook includes these variable definitions.

See Also: ACCEPTFROMSOCKET

BINDSOCKET

CONNECTTOSOCKET

CREATESOCKET

LISTENTOSOCKET

RECEIVESOCKET

SENDSOCKET

SHUTDOWNSOCKET

Sample Program: SERV.CBL

 CobolScript® Developerôs Guide Page 125

COMPUTE

Command: COMPUTE

Syntax: COMPUTE <compute-variable> [ROUNDED] = <expression>.

Description: The COMPUTE statement is used to evaluate a normal mathematical expression, and

place the result in compute-variable. Refer to the Expressions and Conditions section of

Chapter 3, CobolScript Language Constructs, for details on the various forms that

expressions are permitted to take.

COMPUTE also supports the use of functions; see Appendix B, Function Reference, for

complete details on the functions supported.

The use of alphanumeric variables or string literals in a COMPUTE statement is illegal.

Also, only one variable can be acted upon at a time in a CobolScript COMPUTE

statement. This means that multiple assignment statements must be used to assign

multiple variables.

To identify size errors (encountered when a COMPUTE result is larger than the target

variableôs picture clause permits) first check the expression result in a condition, since

size errors do not cause direct program errors. For instance, the following three

statements will place a value of 11 in num_variable without causing a direct program

error:

 1 num_var PIC 99 VALUE 0.

 1 increment_v ar PIC 999 VALUE 111.

 COMPUTE num_var = num_var + increment_var.

This type of overflow can be trapped by first checking the expression with a conditional

statement, as in the following:

 IF (num_var + increment_var) >= 100

 DISPLAY `Limit bypassed`

 ELSE

 COMPUTE num_var = num_var + increment_var

 END- IF.

Example Usage: COMPUTE var = var + 5.

COMPUTE depreciation =

 DDBAMT(cost, life, period, salvage - value).

COMPUTE delta = (((x+y)/z)%3)^1.86 ï SQRT(x).

See Also: ADD

SUBTRACT

MULTIPLY

DIVIDE

Sample Program: COMPUTE.CBL

CONNECTTOSOCKET

Command: CONNECTTOSOCKET

Syntax: CONNECTTOSOCKET USING <socket-number> <ip-address> <port-number>.

Description: The CONNECTTOSOCKET command attempts to establish a remote TCP/IP

connection with the machine at ip-address using a socket socket-number and a port port-

number. Ip-address can be a raw IP address or any valid host name on the network or

internet that will accept the communication.

Page 126 CobolScript® Developerôs Guide

Command: CONNECTTOSOCKET

This command is conventionally used only on the machine that is considered to be the

client in two-way socket connections. It requires that the remote machine accept the

connection with ACCEPTFROMSOCKET or an equivalent command.

The TCP/IP return code and return message variables are populated with standard

TCP/IP return codes and messages after execution of this command. They can be

examined after command execution for error-trapping purposes.

See the Using TCP/IP Commands section of Chapter 6, Network and Internet

Programming Using CobolScript, for more information on using socket commands.

Example Usage: CONNECTTOSOCKET USING socket_num_var

 host_name_var

 port_num_var.

The CONNECTTOSOCKET command requires that the following TCP/IP variable

declarations be included in your program:

1 TCPIP - RETURN- CODES.

 5 TCPIP - RETURN- CODE PIC 9(07).

 5 TCPIP - RETURN- MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program with a COPY or

INCLUDE statement. This copybook includes these variable definitions.

See Also: ACCEPTFROMSOCKET

BINDSOCKET

CLOSESOCKET

CREATESOCKET

LISTENTOSOCKET

RECEIVESOCKET

SENDSOCKET

SHUTDOWNSOCKET

Sample Program: SERV.CBL

CONTINUE

Command: CONTINUE

Syntax: CONTINUE.

Description: The CONTINUE statement can be used as a ódo-nothingô statement in IF .. ELSE clauses

or anywhere else in a program. It is treated as a normal line of code, but does not have

any consequences and passes control to the next statement. Use it when you wish to

structure a condition as IF .. ELSE, but there is no logic to be executed for the IF case,

only for the ELSE case. See the Example Usage.

Example Usage: IF variable1 = 5

 CONTINUE

ELSE

 DISPLAY `variable1 is not equal to 5`

END- IF

Sample Program: NEXT.CBL

COPY

Command: COPY

Syntax: COPY <copybook-literal>.

Description: COPY loads the file named by the literal value copybook-literal into a CobolScript

program. The code that is in the copybook file is loaded and executed as if it were part

of the loading program, exactly in the position of the COPY statement.

In CobolScript, there is no material difference between INCLUDE and COPY.

Example Usage: COPY `COPYBOOK.CPY`.

 CobolScript® Developerôs Guide Page 127

Command: COPY

COPY `copybook.cpy`.

See Also: INCLUDE

Sample Program: COPY.CBL

CREATESOCKET

Command: CREATESOCKET

Syntax: CREATESOCKET USING <socket-number>.

Description: The CREATESOCKET command creates a socket descriptor, or virtual circuit, on a

TCP/IP socket socket-number. Once created, this socket descriptor can then be used

with other CobolScript socket commands.

The TCP/IP return code and return message variables are populated with standard

TCP/IP return codes and messages after execution of this command. They can be

examined after command execution for error-trapping purposes.

See the Using TCP/IP Commands section of Chapter 6, Network and Internet

Programming Using CobolScript, for more information on using socket commands.

Example Usage: CREATESOCKET USING socket_num_var.

The CREATESOCKET command requires that the following TCP/IP variable

declarations be included in your program:

1 TCPIP - RETURN- CODES.

 5 TCPIP - RETURN- CODE PIC 9(07).

 5 TCPIP - RETURN- MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program with a COPY or

INCLUDE statement. This copybook includes these variable definitions.

See Also: ACCEPTFROMSOCKET

BINDSOCKET

CLOSESOCKET

CONNECTTOSOCKET

LISTENTOSOCKET

RECEIVESOCKET

SENDSOCKET

SHUTDOWNSOCKET

Sample Program: SERV.CBL

CREATESHMPOOL

Command: CREATESHMPOOL

Syntax: CREATESHMPOOL <share memory id>

Description: The CREATESHMPOOL command create a share memory pool and returns a handle

that uniquely identifies that storage.

Example Usage: CREATESHMPOOL WS- SHM- ID

See Also: PUTSHMPOOL, GETSHMPOOL, DETACHSHMPOOL

Sample Program: SHM1.CBL, SHM2.CBL

DELETEMAIL

Command: DELETEMAIL

Syntax: DELETEMAIL USING <email address> <email password> <email number> <pop3

server>

Description: The DELETEMAIL command will remove an email from an email server. The account

and password must be supplied as well as the number of the email to remove.

Example Usage: DELETEMAIL USING WS- EMAIL WS- PASS WS- EMAIL- NUM WS- POP3

Page 128 CobolScript® Developerôs Guide

Command: DELETEMAIL

See Also: SENDMAIL, GETMAIL

Sample Program: SIZE.CBL

DETACHSHMPOOL

Command: DETACHSHMPOOL

Syntax: DETACHSHMPOOL <shared memory pool id>

Description: The DETACHSHMPOOL command terminates your usage of a share memory pool.

This should be done when you are finished with it.

Example Usage: DETACHSHMPOOL WS- SHM- ID

See Also: CREATESHMPOOL, PUTSHMPOOL, GETSHMPOOL

Sample Program: SHM1.CBL, SHM2.CBL

DISPLAY

Command: DISPLAY

Syntax: DISPLAY <literal1> & <literal2> & é

 <variable1> <variable2>

 <expression1> <expression2>

Description: The DISPLAY statement is used to display literals, variables, and expressions to the

standard output device (normally the screen in command-line mode, and the web

browser when using CobolScript with a web server). Because CobolScript allows

expressions inside DISPLAY statements, individual arguments to DISPLAY must be

clearly separated using the ampersand (&).

Displaying group items is permitted. Using group items as DISPLAY variables is

especially useful when constructing web pages, both for code clarity and reusability

purposes (group items can be stored in separate copybooks and used by multiple

programs using the COPY and INCLUDE statements).

Use of positional string referencing and the use of expressions as arguments in positional

string referencing are both permitted in DISPLAY statements. See the Example Usage

below.

When directly displaying expressions, five significant digits will usually follow the

decimal point if the expressionôs value is non-integer. If the expressionôs value is

extremely large, however (>1,000,000,000), some precision may be lost in the fractional

portion of the value. CobolScript has an absolute limit of 16 digits of precision, and will

not correctly display or perform computations on any number, expression or variable,

with more than 16 total digits.

Displaying numeric variables is preferred to displaying expressions when format masks

are relevant, or when a value has more than five decimal places; this is because variables

will be displayed according to their defined picture clause format. Numeric variables,

however, are limited to ten total digits of precision for values less than 100,000,000,

slightly more digits of precision for values equal to or higher than 100,000,000, with a

absolute maximum of 16 digits of precision. To use a variable in place of an expression,

simply define a variable and assign it to the expression of interest using a COMPUTE

statement; then DISPLAY the variable in place of the expression.

The CobolScript string delimiter is the ` (the accent key, usually located in the upper left

corner of American keyboards, below the Esc key). String literals must be enclosed by

` in order for them to display properly. Alternatively, the string delimiter can be changed

for a particular program run by setting the appropriate command line option. Refer to

the section Running CobolScript from the Command Line, in Chapter 2, Getting Started

with CobolScript, to learn more about command line options.

 CobolScript® Developerôs Guide Page 129

Command: DISPLAY

Example Usage: DISPLAY with multiple arguments:

DISPLAY var1 &

 var2 & var3.

Expression example:
DISPLAY output + 5.

Positional string referencing example (with expression as argument):

DISPLAY `Hour: ` & time(start_pos:start_pos+1).

Group level data item example:
1 group_level.

 5 `This is`.

 5 ` a test.`.

DISPLAY group_level.

See Also: DISPLAYLF, DISPLAYFILE

Sample Program: DISPLAY.CBL

DISPLAYASCIIFILE

Command: DISPLAYASCIIFILE

Syntax: DISPLAYASCIIFILE <filename>

Description: The DISPLAYASCIIFILE command will display the contents of the specified ASCII file

filename to the standard output device.

DISPLAYASCIIFILE is useful for displaying individual files that contain raw HTML to

the calling browser window, so long as the appropriate MIME header information is first

displayed; this can be useful if you wish to clearly separate program logic from HTML

without going through the effort of placing the HTML into group item variables. See the

Creating Virtual HTML section of Chapter 5, Building Web-Based Systems, for

information on displaying MIME headers.

DISPLAYASCIIFILE can also be used within a CobolScript program to transfer an

ASCII file to a remote user. This is useful for user-initiated downloads through CGI

form submissions on a web site that requires user verification or other logic to execute

prior to the actual file transfer. See Chapter 7, Advanced Internet Programming

Techniques Using CobolScript for more information on how to use

DISPLAYASCIIFILE in this manner.

DISPLAYASCIIFILE should only be used to display files that are ASCII text; use

DISPLAYFILE to display binary files.

Example Usage: DISPLAYASCIIFILE `test.dat`.

DISPLAYASCIIFILE filename_var.

See Also: DISPLAYFILE, DISPLAY, DISPLAYLF

Sample Program: DOWN.CBL

DISPLAYFILE

Command: DISPLAYFILE

Syntax: DISPLAYFILE <filename>

Description: The DISPLAYFILE command will display the contents of the specified binary file

filename to the standard output device.

DISPLAYFILE can be used within a CobolScript program to transfer a binary file (such

as an executable) to a remote user. This is useful for user-initiated downloads through

Page 130 CobolScript® Developerôs Guide

Command: DISPLAYFILE

CGI form submissions on a web site that requires user verification or other logic to

execute prior to the actual file transfer. See Chapter 7, Advanced Internet Programming

Techniques Using CobolScript for more information on how to use DISPLAYFILE in

this manner.

DISPLAYFILE should only be used to display binary files; use DISPLAYASCIIFILE to

display ASCII text files.

Example Usage: DISPLAYFILE `test.exe`.

DISPLAYFILE filename_var.

See Also: DISPLAYASCIIFILE, DISPLAY, DISPLAYLF

Sample Program: DOWN.CBL

DISPLAYLF

Command: DISPLAYLF

Syntax: DISPLAYLF <literal1> & <literal2> & é

 <variable1> <variable2>

 <expression1> <expression2>

Description: DISPLAYLF is the same as DISPLAY, but displays a trailing linefeed character after

every elementary item argument has been displayed, including those cases where the

initial argument is a group item.

Example Usage: Example with gldi argument:
1 group_level.

 5 `This is`.

 5 ` a test.`.

DISPLAYLF group_level.

Example with multiple elementary arguments:
1 var1 PIC X(N) VALUE `This is`.

1 var2 PIC X(N) VALUE ` a test.`.

DISPLAYLF var1 & var2 & `..`.

See Also: DISPLAY, DISPLAYFILE

Sample Program: DISPLAY.CBL

DIVIDE

Command: DIVIDE

Syntax: Variant 1:

DIVIDE <number or divisor-variable1> é INTO <dividend-variable> [ROUNDED]

Variant 2:

DIVIDE <number or divisor-variable1> é INTO <number or dividend-variable> GIVING

<result-variable> [ROUNDED] [REMAINDER <remainder-variable>]

Variant 3:

DIVIDE <number or dividend-variable> BY <number or divisor-variable> GIVING <result-

variable> [ROUNDED] [REMAINDER <remainder-variable>]

If a REMAINDER clause is specified in Variant 2 of the DIVIDE statement, only a

single divisor may be specified. Only one divisor and one dividend may be specified in

Variant 3 of the DIVIDE statement, regardless of whether the REMAINDER clause is

used.

Description: Variant 1 of the DIVIDE statement is used to divide one or more numbers and/or

numeric divisor-variables into a target numeric dividend-variable. The result is stored in

 CobolScript® Developerôs Guide Page 131

Command: DIVIDE

the dividend-variable, and its previous value is overwritten. This form of DIVIDE is

equivalent to the COMPUTE statement:

 COMPUTE dividend-variable =

 dividend-variable/divisor-variable1/divisor-variable2/é .

Variant 2 of the DIVIDE statement is used to divide one or more numbers and/or

divisor-variables into a number or dividend-variable, and the result is stored in a

separate result-variable, thereby preserving the value in the dividend-variable. This

form of DIVIDE is equivalent to the COMPUTE statement:

 COMPUTE result-variable =

 dividend-variable/divisor-variable1/divisor-variable2/é .

Variant 3 of the DIVIDE statement is used to divide a number or dividend-variable by a

single number and/or divisor-variable. The result is stored in a separate result-variable.

This form of DIVIDE is equivalent to the COMPUTE statement:

 COMPUTE result-variable = dividend-variable/divisor-variable.

Variants 2 and 3 of DIVIDE permit the usage of the REMAINDER keyword, which

stores the remainder from the division operation in a separate remainder-variable. The

remainder is the portion of the dividend that would be left over if the result were forced

to be an integer value. Using the REMAINDER keyword in a DIVIDE statement is

equivalent to executing two separate COMPUTE statements, the first the actual division,

and the second the remainder calculation using the modulus (%) operator:

 COMPUTE result-variable = dividend-variable/divisor-variable.

 COMPUTE remainder-variable = dividend-variable % divisor-variable.

All variants of DIVIDE permit the use of the ROUNDED keyword, which rounds the

target variable, after computation, to the nearest integer.

Example Usage: Variant 1:
DIVIDE 1 INTO num_variable.

DIVIDE 1 2 3 INTO num_variable.

DIVIDE value_var INTO total.
DIVIDE 1.11 2 value_var INTO total ROUNDED .

Variant 2:
DIVIDE value_var INTO subtotal GIVING total.

DIVIDE 9.99 value_var INTO subtotal

 GIVING result ROUNDED .

DIVIDE value_var INTO subtotal

 GIVING result ROUNDED

 REMAINDER remainder.

Variant 3:
DIVIDE subtotal BY value_var GIVING result.

DIVIDE subtotal BY value_var GIVING result ROUNDED .

DIVIDE subtotal BY value_var GIVING result ROUNDED

 REMAINDER remainder.

See Also: COMPUTE

ADD

SUBTRACT

MULTIPLY

Sample Program: DIVIDE.CBL

Page 132 CobolScript® Developerôs Guide

EXEC SQL

Command: EXEC SQL (CobolScript Professional Edition Only)

Syntax: EXEC SQL

 <sql-statement>

END-EXEC.

Description: This LinkMakerÊ command executes a single SQL statement sql-statement. A

connection must be established to the data source with the OPENDB command before

this command can be used. See Appendix H for further explanation and examples of

how to use this command. See Appendix G for more information about configuring data

sources.

An SQL communications area is required when working with a LinkMakerÊ data

source. In CobolScript, this area of memory is allocated by defining the variable sql-

return-codes. You should include this definition in any of your programs that use

LinkMakerÊ; all of these variables are all standard ODBC return code variables:

1 sql - return - codes.

 5 sqlstate PIC X(5).

 5 sqlnativeerror PIC S9(6).

 5 sqlerrormessage PIC X(500).

 5 sqlstatement PIC X(500).

After an SQL statement has been executed, these variables contain information that was

returned from the data source. The variable sqlstate will contain the ODBC SQLSTATE

returned from the data source; sqlnativeerror will contain a data source-specific return

code; sqlerrormessage will contain text describing an error, if one occurred; and

sqlstatement will contain a copy of the SQL that was passed to the data source. These

return values are provided to assist with database application debugging. It is important

to remember, however, that these return values come from the data source, and are

therefore specific to that data source. Consult your data sourceôs documentation for

specific information about the values returned to these variables.

Example Usage: EXEC SQL

 insert into cus tomer

 values (óJaneô,ôDoeô, :host_var_balance)

END- EXEC.

See Also: OPENDB, CLOSEDB

Sample Program: SQL.CBL

EXECUTE

Command: EXECUTE

Syntax: EXECUTE <code-component-1> <code-component-2> é

Description: EXECUTE dynamically interprets a program statement contained inside

code-component literal(s) or variable(s), either elementary or group item. Literal

keywords such as ACCENT are also permitted as arguments to EXECUTE.

EXECUTE is useful when some program logic component is undetermined prior to

program execution. See the section titled Dynamic Statement Creation and Execution in

Chapter 8 for practical examples of EXECUTE usage.

An unusual form of recursion is possible by using EXECUTE to call other EXECUTE

statements, e.g.:

EXECUTE `EXECUTE statement_var`.

Although this type of recursion may be difficult to conceptualize and use for normal

programming, it is supported. The maximum permitted number of nested recursive calls

of this nature is 500; bypassing this limit will cause CobolScript to generate a normal

error message specific to this recursion.

 CobolScript® Developerôs Guide Page 133

Command: EXECUTE

Moderate caution should be exercised when using EXECUTE to process user input;

naturally, it is inadvisable to accept unauthorized user input in the form of a whole code

statement for use as an EXECUTE argument; however, since one EXECUTE statement

can only process a single code statement, allowing user input for portions of a statement

may be appropriate, depending on your objective. The level of flexibility that you permit

in user input is directly constrained by how much you wish to restrict user actions; this is

therefore your decision to make.

Example Usage: 1 test_var PIC X(n) VALUE `Hello, `.

1 execute_group.

 5 `DISPLAY`.

 5 ` test_var`.

EXECUTE execute_group `&` ACCENT `world.` ACCENT.

Sample Program: EXECUTE.CBL

FD

Command: FD

Syntax: FD <filename> RECORD IS <bytes-length> BYTES.

Description: The FD statement describes a data fileôs location and its record length to CobolScript.

This statement is a necessary precursor to all flat (text) file data processing work.

The filename is a literal or variable that includes the name of the data file as well as any

path information, which is necessary if the file is not in the current working directory of

the program. The bytes-length is a numeric variable or literal that indicates the record

length, in bytes, of the file record. The bytes-length value should account for any

delimiters that are in the record but should not account for end-of-line characters; these

end-of-line characters vary between Windows and Unix platforms, and this variation is

automatically accounted for by CobolScript. The bytes-length value must be exact for

statements that rely on this value, such as POSITION, to work correctly.

Once a data file has been described, it may be opened and further processed. For further

information on describing files, see the Data and Copybook Files section of Chapter 3,

CobolScript Language Constructs. For more information on data file processing, see

Chapter 4, File Processing and I/O.

Page 134 CobolScript® Developerôs Guide

Command: FD

Example Usage: Example with literal arguments:
FD `test.dat` RECORD IS 50 BYTES.

Example with variable arguments, which are defined prior to the FD:
1 test_file PIC X(n) VALUE `test.dat`.

1 bytes_length PIC 99 VALUE 50.

FD test_file RECORD IS bytes_length BYTES.

Example that includes path information for a Windows® machine:
1 test_file PIC X(n) VALUE

 `c: \ windows \ desktop \ test.dat`.

1 bytes_leng th PIC 99 VALUE 50.

FD test_file RECORD IS bytes_length BYTES.

Example that includes path information for a Unix machine:
1 test_file PIC X(n) VALUE `/usr/cscript/test.dat`.

1 bytes_length PIC 99 VALUE 50.

FD test_file RECORD IS bytes_length BYTES.

See Also: CLOSE

OPEN

POSITION

READ

REWRITE

WRITE

Sample Program: FTP.CBL

FTPASCII

Command: FTPASCII

Syntax: FTPASCII.

Description: The FTPASCII command sets the FTP file transfer mode to ASCII mode (as opposed to

binary mode ï see FTPBINARY command below). ASCII file transfer mode should be

used when the file to be transferred is an ASCII text file.

The FTPASCII command should generally be used immediately before a statement that

uses the FTPPUT or FTPGET commands.

An open FTP connection must be established with FTPCONNECT prior to issuing the

FTPASCII command.

The TCP/IP return code and return message variables are populated with standard FTP

return codes and messages after execution of this command. They can be examined after

command execution for error-trapping purposes.

See the Transferring Files Using FTP section of Chapter 6, Network and Internet

Programming Using CobolScript, for more information on using socket commands.

Example Usage: FTPASCII.

The FTPASCII command requires that the following variable definitions be included in

your program:

1 TCPIP - RETURN- CODES.

 5 TCPIP - RETURN- CODE PIC 9(07).

 5 TCPIP - RETURN- MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program. This copybook

includes these variable definitions.

See Also: FTPBINARY, FTPGET, FTPPUT

Sample Program: FTP.CBL

 CobolScript® Developerôs Guide Page 135

FTPBINARY

Command: FTPBINARY

Syntax: FTPBINARY.

Description: The FTPBINARY command sets the FTP file transfer mode to binary mode (as opposed

to ASCII mode ï see FTPASCII command above). Binary file transfer mode should be

used when the file to be transferred is a non-text file (any proprietary format file or

executable).

The FTPBINARY command should generally be used immediately before a statement

that uses the FTPPUT or FTPGET commands.

An open FTP connection must be established with FTPCONNECT prior to issuing the

FTPBINARY command.

The TCP/IP return code and return message variables are populated with standard FTP

return codes and messages after execution of this command. They can be examined after

command execution for error-trapping purposes.

See the Transferring Files Using FTP section of Chapter 6, Network and Internet

Programming Using CobolScript, for more information on using socket commands.

Example Usage: FTPBINARY.

The FTPBINARY command requires that the following variable definitions be included

in your program:

1 TCPIP - RETURN- CODES.

 5 TCPIP - RETURN- CODE PIC 9(07).

 5 TCPIP - RETURN- MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program. This copybook

includes these variable definitions.

See Also: FTPASCII, FTPGET, FTPPUT

Sample Program: FTP.CBL

FTPCD

Command: FTPCD

Syntax: FTPCD USING <directory-name>.

Description: The FTPCD command changes the working FTP directory on a remotely-connected

machine to the directory name contained in the variable or literal directory-name.

An open FTP connection to a remote machine must first be successfully established with

FTPCONNECT before FTPCD can be used.

The TCP/IP return code and return message variables are populated with standard FTP

return codes and messages after execution of this command. They can be examined after

command execution for error-trapping purposes.

See the Transferring Files Using FTP section of Chapter 6, Network and Internet

Programming Using CobolScript, for more information on using socket commands.

Example Usage: FTPCD USING ` \ ftp`.

FTPCD USING ftp_dir.

The FTPCD command requires that the following variable definitions be included in

your program:

1 TCPIP - RETURN- CODES.

 5 TCPIP - RETURN- CODE PIC 9(07).

Page 136 CobolScript® Developerôs Guide

Command: FTPCD

 5 TCPIP - RETURN- MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program. This copybook

includes these variable definitions.

See Also: FTPPUT, FTPGET

Sample Program: FTP.CBL

FTPCLOSE

Command: FTPCLOSE

Syntax: FTPCLOSE.

Description: The FTPCLOSE command closes an FTP connection that has been made with the

FTPCONNECT command.

The TCP/IP return code and return message variables are populated with standard FTP

return codes and messages after execution of this command. They can be examined after

command execution for error-trapping purposes.

See the Transferring Files Using FTP section of Chapter 6, Network and Internet

Programming Using CobolScript, for more information on using socket commands.

Example Usage: FTPCLOSE.

The FTPCLOSE command requires that the following variable definitions be included in

your program:

1 TCPIP - RETURN- CODES.

 5 TCPIP - RETURN- CODE PIC 9(07).

 5 TCPIP - RETURN- MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program. This copybook

includes these variable definitions.

See Also: FTPCONNECT

Sample Program: FTP.CBL

FTPCONNECT

Command: FTPCONNECT

Syntax: FTPCONNECT USING <hostname> <user-id> <password>.

Description: The FTPCONNECT command attempts to establish an FTP connection with a remote

machine at hostname using user-id and password.

The TCP/IP return code and return message variables are populated with standard FTP

return codes and messages after execution of this command. They can be examined after

command execution for error-trapping purposes.

See the Transferring Files Using FTP section of Chapter 6, Network and Internet

Programming Using CobolScript, for more information on using socket commands.

Example Usage: FTPCONNECT USING `ftp.deskware.com` `anonymous`

`info@deskware.com`.

FTPCONNECT USING server_var

 user_id_var

 password_var.

The FTPCONNECT command requires that the following variable definitions be included

in your program:

 CobolScript® Developerôs Guide Page 137

Command: FTPCONNECT

1 TCPIP - RETURN- CODES.

 5 TCPIP - RETURN- CODE PIC 9(07).

 5 TCPIP - RETURN- MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program. This copybook

includes these variable definitions.

See Also: FTPCLOSE

Sample Program: FTP.CBL

FTPGET

Command: FTPGET

Syntax: FTPGET USING <filename>.

Description: The FTPGET command downloads a file filename from a connected remote machine via

the FTP protocol.

An open FTP connection to a remote machine must first be successfully established with

FTPCONNECT before FTPGET can be used. The file transfer type is either ASCII or

binary, and this can be set prior to calling FTPGET by using the FTPASCII and

FTPBINARY commands.

The TCP/IP return code and return message variables are populated with standard FTP

return codes and messages after execution of this command. They can be examined after

command execution for error-trapping purposes.

See the Transferring Files Using FTP section of Chapter 6, Network and Internet

Programming Using CobolScript, for more information on using socket commands.

Example Usage: FTPGET USING `test.dat`.

FTPGET USING test_file.

The FTPBINARY command requires that the following variable definitions be included in

your program:

1 TCPIP - RETURN- CODES.

 5 TCPIP - RETURN- CODE PIC 9(07).

 5 TCPIP - RETURN- MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program. This copybook

includes these variable definitions.

See Also: FTPPUT, FTPASCII, FTPBINARY

Sample Program: FTP.CBL

FTPPUT

Command: FTPPUT

Syntax: FTPPUT USING <filename>

Description: The FTPPUT command uploads a file filename to a remote machine via the FTP protocol.

An open FTP connection to a remote machine must first be successfully established with

FTPCONNECT before FTPPUT can be used. The file transfer type is either ASCII or

binary, and this can be set prior to calling FTPPUT by using the FTPASCII and

FTPBINARY commands.

Page 138 CobolScript® Developerôs Guide

Command: FTPPUT

The TCP/IP return code and return message variables are populated with standard FTP

return codes and messages after execution of this command. They can be examined after

command execution for error-trapping purposes.

See the Transferring Files Using FTP section of Chapter 6, Network and Internet

Programming Using CobolScript, for more information on using socket commands.

Example Usage: FTPPUT USING `upload.dat`.

FTPPUT USING test_file.

The FTPBINARY command requires that the following variable definitions be included in

your program:

1 TCPIP - RETURN- CODES.

 5 TCPIP - RETURN- CODE PIC 9(07).

 5 TCPIP - RETURN- MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program. This copybook

includes these variable definitions.

See Also: FTPGET, FTPASCII, FTPBINARY

Sample Program: FTP.CBL

GETBANNER

Command: GETBANNER

Syntax: GETBANNER USING <banner-input> <banner-character-input> <banner-target-

variable>.

Description: GETBANNER places a Unix-style banner into a group item variable. The contents of

banner-input are the large characters of the banner; the contents of banner-character-

input are the component characters of the banner, which are the small characters used to

make the banner letters. If banner-character-input is equal to a single space (` ` or the

SPACE keyword), the component character of each large letter will be a smaller version

of itself, e.g.,

GETBANNER USING `TEST` SPACE banner_target_variable

will generate the following output for banner-target-variable population:

TTTTTTT EEEEEEE SSSSS TTTTTTT

 T E S S T

 T E S T

 T EEEEE SSSSS T

 T E S T

 T E S S T

 T EEEEEEE S SSSS T

To work properly, GETBANNER requires that the banner-target-variable be defined as

a group item with 8 elementary items. See example below.

Example Usage: 1 text_banner_char PIC X VALUE `#`.

1 banner_group.

 5 banner_line1 PIC X(35).

 5 banner_line2 PIC X(35).

 5 banner_line3 PIC X(35).

 5 banner_line4 PIC X(35).

 5 banner_line5 PIC X(35).

 5 banner_line6 PIC X(35).

 5 banner_line7 PIC X(35).

 5 banner_line8 PIC X(35).

GETBANNER USING `TEST` `#` banner_group.

 CobolScript® Developerôs Guide Page 139

Command: GETBANNER

DISPLAYLF banner_group.

GETBANNER USING text banner_char banner_group.

DISPLAYLF banner_group.

See Also: BANNER

Sample Program: GETBAN.CBL

GETCALENDAR

Command: GETCALENDAR

Syntax: GETCALENDAR USING <year-input> <month-input> <calendar-target-variable>.

Description: The GETCALENDAR command places a calendar for a given year year-input and a

given month month-input into a target group item variable calendar-target-variable. The

year-input and month-input should be numeric values; if they are variables, their variable

declarations must have numeric picture clauses. Any fractional component to year-input

or month-input will be ignored, e.g., a month-input of 11.88 will be processed as 11.

GETCALENDAR does not support pre-Julian calendar dates, i.e., any date prior to

August 1752.

To work properly, GETCALENDAR requires that the calendar-target-variable be

defined as a group item with 8 elementary items. See the Example Usage below.

Example Usage: 1 year_var PIC 9(4) VALUE 2001.

1 month_var PIC 99 VALUE 1.

1 calendar_group.

 5 calendar_line1 PIC X(30).

 5 calendar_line2 PIC X(30).

 5 calendar_line3 PIC X(30).

 5 calendar_line4 PIC X(30).

 5 calendar_line5 PIC X(30).

 5 calendar_line6 PIC X(30).

 5 calendar_line7 PIC X(30).

 5 calendar_line8 PIC X(30).

GETCALENDAR USING 2001 1 calendar_group.

DISPLAYLF calend ar_group.

GETCALENDAR USING year_var month_var calendar_group.

DISPLAYLF calendar_group.

See Also: CALENDAR

Sample Program: GETCAL.CBL

GETCMDLINE

Command: GETCMDLINE

Syntax: GETCMDLINE <num-args> <args>

Description: The GETCMDLINE command will retrieve the input parameters supplied to the program

upon execution.

Example Usage: GETCMDLINE WS- NUM- ARGS WS- ARGS

See Also: CALL

Sample Program: GETCMDLINE.CBL

Page 140 CobolScript® Developerôs Guide

GETENV

Command: GETENV

Syntax: GETENV USING <environmental-variable> <cobolscript-variable>.

Description: The GETENV command accepts a literal or variable whose contents are an operating

system environmental variable, environmental-variable, from the operating system

environment and copies the value to the variable cobolscript-variable. Environmental

variables are values that are set by the operating system and provide information about

the current operating environment.

This command can be used in CobolScript internet programs that need to get information

about their web server environment. See Chapter 7 for a list of the environmental

variables that are made available by a web server.

Example Usage: Example that uses a literal as the environmental variable argument:

GETENV USING `CONTENT_LENGTH` content_length_var.

Example that uses a variable as the environmental variable argument:

1 env_variable PIC X(n) VALUE `CONTENT_LENGTH`.

GETENV USING env_variable content_length_var.

See Also: ACCEPT

Sample Program: GETENV.CBL

GETHOSTBYNAME

Command: GETHOSTBYNAME

Syntax: GETHOSTBYNAME USING <hostname>.

Description: The GETHOSTBYNAME command resolves a hostname and returns detailed

information about the host. The hostname that is supplied can either be the name of the

host or an IP address. The information returned about a host is stored in the TCPIP-

HOSTENT group-level data item variable (see below). It contains all of the aliases for

this IP address, other IP addresses associated with this host, the address type, and the

address length.

The TCP/IP return code and return message variables are populated with standard

TCP/IP return codes and messages after execution of this command. They can be

examined after command execution for error-trapping purposes.

See the Using TCP/IP Commands section of Chapter 6, Network and Internet

Programming Using CobolScript, for more information on using DNS commands.

Example Usage: GETHOSTBYNAME USING `deskware.com`.

GETHOSTBYNAME USING `206.228.224.17`.

GETHOSTBYNAME USING ip_variable.

The GETHOSTBYNAME command requires that the following TCP/IP variable

definitions be included in your program:

1 TCPIP - HOSTENT.

 5 TCPIP - HOSTENT- HOSTNAME PIC X(255).

 5 TCPIP - HOSTENT- NUM- ALIASES PIC X(01).

 5 TCPIP - HOSTENT- ALIASES OCCURS 8 TIMES.

 10 TCPIP - HOSTENT- ALIAS PIC X(255).

 5 TCPIP - HOSTENT- ADDRESS- TYPE PIC 9(07).

 5 TCPIP - HOSTENT- ADDRESS- LENGTH PIC 9(07).

 5 TCPIP - HOSTENT- NUM- ADDRESSES PIC X(01).

 5 TCPIP - HOSTENT- ADDRESSES OCCURS 8 TIMES.

 10 TCPIP - HOSTENT- ADDRESS PIC X(255).

 CobolScript® Developerôs Guide Page 141

Command: GETHOSTBYNAME

1 TCPIP - RETURN- CODES.

 5 TCPIP - RETURN- CODE PIC 9(07).

 5 TCPIP - RETURN- MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program. This copybook

includes these variable definitions.

See Also: GETHOSTNAME

Sample Program: GETHN.CBL, DNS.CBL

GETHOSTNAME

Command: GETHOSTNAME

Syntax: GETHOSTNAME USING <hostname-variable>.

Description: GETHOSTNAME places the hostname of the current machine (the one on which

CobolScript is installed) in the target variable hostname-variable. The hostname is a

machine-specific parameter that generally is derived from the /etc/hosts file on Unix

machines, and from the registry on Windows machines.

The TCP/IP return code and return message variables are populated with standard

TCP/IP return codes and messages after execution of this command. They can be

examined after command execution for error-trapping purposes.

See the Using TCP/IP Commands section of Chapter 6, Network and Internet

Programming Using CobolScript, for more information on using DNS commands.

Example Usage: GETHOSTNAME USING hostname_var.

The GETHOSTNAME command requires that the following TCP/IP variable

declarations be included in your program:

1 TCPIP - HOSTENT.

 5 TCPIP - HOSTENT- HOSTNAME PIC X(255).

 5 TCPIP - HOSTENT- NUM- ALIASES PIC X(01).

 5 TCPIP - HOSTENT- ALIASES OCCURS 8 TIMES.

 10 TCPIP - HOSTENT- ALIAS PIC X(255).

 5 TCPIP - HOSTENT- ADDRESS- TYPE PIC 9(07).

 5 TCPIP - HOSTENT- ADDRESS- LENGTH PIC 9(07).

 5 TCPIP - HOSTENT- NUM- ADDRESSES PIC X(01).

 5 TCPIP - HOSTENT- ADDRESSES OCCURS 8 TIMES.

 10 TCPIP - HOSTENT- ADDRESS PIC X(255).

1 TCPIP - RETURN- CODES.

 5 TCPIP - RETURN- CODE PIC 9(07).

 5 TCPIP - RETURN- MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program. This copybook

includes these variable definitions.

See Also: GETHOSTBYNAME

Sample Program: GETHN.CBL

GETMAIL

Command: GETMAIL

Syntax: GETMAIL USING <email-address> <password> <email-number> <email-filename>

<smtp-server>. +

Page 142 CobolScript® Developerôs Guide

Command: GETMAIL

Description: The GETMAIL command connects to smtp-server using email-address and password,

and retrieves the email message whose number is email-number. The email message is

appended to the file email-filename.

The TCP/IP return code and return message variables are populated with standard

TCP/IP return codes and messages after execution of this command. They can be

examined after command execution for error-trapping purposes.

See the Using Email Commands section of Chapter 6, Network and Internet

Programming Using CobolScript, for more information on email commands.

Example Usage: Literal argument example:
GETMAIL USING `info@deskware.com` `12jkd` 1 `MAIL.TXT`

`deskware.com`.

Variable argument example:
GETMAIL USING email_address

 password

 number_of_mail_to_get

 mail_file

 smtp_server.

The GETMAIL command requires that the following variable definitions be included in

your program:

1 TCPIP - RETURN- CODES.

 5 TCPIP - RETURN- CODE PIC 9(07).

 5 TCPIP - RETURN- MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program. This copybook

includes these variable definitions.

See Also: SENDMAIL, GETMAILCOUNT

Sample Program: MAIL.CBL

GETMAILCOUNT

Command: GETMAIL COUNT

Syntax: GETMAILCOUNT USING <email-address> <password> <count-variable> <smtp-

server>.

Description: The GETMAILCOUNT command connects to smtp-server using email-address and

password, determines the number of emails that are in the account for email-address, and

populates count-variable with this number.

The TCP/IP return code and return message variables are populated with standard

TCP/IP return codes and messages after execution of this command. They can be

examined after command execution for error-trapping purposes.

See the Using Email Commands section of Chapter 6, Network and Internet

Programming Using CobolScript, for more information on email commands.

Example Usage: Example with literal arguments for email address, password, and smtp server:

GETMAILCOUNT USING `info@deskware.com` `12F3g` email_count

`deskware.com`.

Example with variable arguments:
GETMAILCOUNT USING email_address

 password

 email_count

 smtp_server.

The GETMAILCOUNT command requires that the following variable definitions be

included in your program:

+

+

 CobolScript® Developerôs Guide Page 143

Command: GETMAIL COUNT

1 TCPIP - RETURN- CODES.

 5 TCPIP - RETURN- CODE PIC 9(07).

 5 TCPIP - RETURN- MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program. This copybook

includes these variable definitions.

See Also: GETMAIL

Sample Program: MAIL.CBL

GETMAILSIZE

Command: GETMAILSIZE

Syntax: GETMAILSIZE USING <email address> <email password> <email number> <pop3

server> <size of emails>

Description: The GETMAILSIZE command is used to determine the size in bytes of an email

message.

Example Usage: GETMAILSIZE USING WS- EMAIL WS- PASS WS- NUM WS- PO3 WS- EMAIL-

SIZE.

See Also: GM.CBL, SM.CBL

Sample Program: SIZE.CBL

GETSHMPOOL

Command: GETSHMPOOL

Syntax: GETSHMPOOL <share memory pool id> <data>

Description: The GETSHMPOOL command will read the contents of a share memory pool and

populate a variable with the contents.

Example Usage: GETSHMPOOL WS- SHM- ID WS- DATA

See Also: PUTSHMPOOL, CREATESHMPOOL, DETACHSHMPOOL

Sample Program: SHM1.CBL, SHM2.CBL

GETTIMEFROMSERVER

Command: GETTIMEFROMSERVER

Syntax: GETTIMEFROMSERVER USING <hostname> <server-time-variable>.

Description: GETTIMEFROMSERVER contacts a server hostname, and retrieves and stores the local

time from that machine in a variable server-time-variable. The variable can be either the

name of the host or the IP address.

Note that currently the GETTIMEFROMSERVER command will only work

successfully if a time daemon is running on the hostname server; if a time daemon is not

running on hostname, the GETTIMESERVER command will wait indefinitely for a

response from the server. If this happens, the process must be killed manually to

properly terminate execution of the CobolScript program. Generally, you should only

Page 144 CobolScript® Developerôs Guide

Command: GETTIMEFROMSERVER

use GETTIMEFROMSERVER when you are certain that a time daemon is running on

hostname.

The TCP/IP return code and return message variables are populated with standard

TCP/IP return codes and messages after execution of this command. They can be

examined after command execution for error-trapping purposes.

Example Usage: GETTIMEFROMSERVER USING `purdue.edu` server_time.

GETTIMEFROMSERVER USING server_var server_time.

The GETTIMEFROMSERVER command requires that the following variable

definitions be included in your program:

1 TCPIP - RETURN- CODES.

 5 TCPIP - RETURN- CODE PIC 9(07).

 5 TCPIP - RETURN- MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program. This copybook

includes these variable definitions.

See Also: GETHOSTNAME, GETHOSTBYNAME

Sample Program: IPTIME.CBL

GETWEBPAGE

Command: GETWEBPAGE

Syntax: GETWEBPAGE <hostname> <webpage-path> <webpage-filename>.

Description: The GETWEBPAGE command connects to hostname using the HTTP protocol, and

retrieves the webpage at location webpage-path. This webpage is then written to the file

webpage-filename, replacing any previous contents of webpage-filename.

The TCP/IP return code and return message variables are populated with standard

TCP/IP return codes and messages after execution of this command. They can be

examined after command execution for error-trapping purposes.

Example Usage: GETWEBPAGE `www.deskware.com` `/index.htm` `DESK.TXT`.

GETWEBPAGE server_var path_var filename_var.

The GETWEBPAGE command requires that the following variable definitions be

included in your program:

1 TCPIP - RETURN- CODES.

 5 TCPIP - RETURN- CODE PIC 9(07).

 5 TCPIP - RETURN- MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program. This copybook

includes these variable definitions.

See Also: GETHOSTNAME, GETHOSTBYNAME

Sample Program: WEB.CBL

GOBACK

Command: GOBACK

Syntax: GOBACK.

Description: The GOBACK command ends the execution of a program. No commands following

GOBACK will be executed. There is no material difference between GOBACK and

STOP RUN in CobolScript.

 CobolScript® Developerôs Guide Page 145

Command: GOBACK

For COBOL programmers, note that GOBACK is not the equivalent of the COBOL

GOBACK command.

Example Usage: GOBACK.

See Also: STOP RUN

Sample Program: GOBACK.CBL

IF

Command: IF

Syntax: IF <condition> [THEN]

 <statement>

 :

[ELSIF <elsif-condition>

 :

]

[ELSIF <elsif-condition-2>

 :

]

.

.

[ELSE

 <statement>

 :

]

END-IF

Description: The IF statement is a basic programming construct; it controls program flow based on

whether a condition evaluates to TRUE or FALSE.

IF first evaluates condition, and if condition is TRUE, executes the statement(s)

following condition (or after the optional THEN keyword) and then leaves the IF clause

by passing control to the statement following the END-IF keyword. If condition is

FALSE, control passes to the next ELSIF clause or ELSE keyword, if one or these exists.

If an ELSIF clause exists, elsif-condition is evaluated. If elsif-condition is TRUE, the

statements following the ELSIF clause are executed, and control is passed to the

statement following the ELSIF keyword. If elsif-condition is FALSE, control passes to

the next ELSIF or ELSE, if one exists. If an ELSE is reached and all prior conditions

and ELSIF conditions have evaluated to FALSE, the statement(s) after the ELSE

keyword are executed. For this reason, if you specify an ELSE clause it should always

be the last part of your IF statement.

There is no imposed limit to the number of ELSIF clauses that may be specified.

Practical limits do exist due to program size limits, but you should not encounter these

limits in normal programming.

ELSIF clauses should always be placed in the order that you want each ELSIF condition

evaluated, if the order is relevant. Generally, the use of ELSIF clauses will necessitate

the use of an ELSE to cover all other cases; good programming practice warrants the use

of an ELSE when using ELSIFs even if no action should be taken in the ELSE case.

This can be done by using the CONTINUE statement, which acts as a placeholder or ódo

nothingô statement, as in the following:

IF var > 1
 DISPLAY `Greater than one`

ELSIF var =1

 DISPLAY `Equal to one`

ELSIF var < 0

 DISPLAY `Less than zero`

ELSE

 CONTINUE

Page 146 CobolScript® Developerôs Guide

Command: IF

END- IF.

Condition and elsif-condition are any normal expressions that evaluate to a number;

typically, conditions are statements of fact, and therefore can only evaluate to 1 (TRUE)

or 0 (FALSE), as in the following cases:

IF var >= 1

IF letter IS ALPHABETIC THEN

IF AL PHABETIC(letter)

IF a = 1 OR a = 2 THEN

IF (x + y + z) IS NOT GREATER THAN 6 AND y = 4

In the above cases, all TRUE-evaluating conditions have an integer value of 1.

However, in CobolScript, any nonzero condition result is considered TRUE, and only

zero results are considered FALSE. Therefore, the following type of conditions are also

possible in CobolScript:

IF (ï5) THEN

IF var

IF NOT(var)

IF x + y + z

For COBOL programmers, note that CobolScript enforces C-like rules for expression

construction. COBOL constructs such as implied subjects and implied operators

encourage poor programming practices and are not permitted in CobolScript ï all

conditions must be completely and explicitly defined.

For more information on conditions and expressions, refer to the Expressions and

Conditions section in Chapter 3, CobolScript Language Constructs.

Example Usage: IF var1 > var2

 DISPLAY `var1 is greater than var2`

ELSIF var < var2

 DISPLAY `var1 is less than var2`

ELSE

 DISPLAY `var1 is equal to var2`

END- IF

Sample Program: IF.CBL

INCLUDE

Command: INCLUDE

Syntax: INCLUDE <copybook-literal>.

Description: INCLUDE loads the file named by the literal value copybook-literal into a CobolScript

program. The code that is in the copybook file is loaded and executed as if it were part

of the loading program, exactly in the position of the COPY statement.

In CobolScript, there is no material difference between INCLUDE and COPY.

Example Usage: INCLUDE `COPYBOOK.INC`.

INCLUDE copybook_var.

See Also: COPY

Sample Program: COPY.CBL

 CobolScript® Developerôs Guide Page 147

INITIALIZE

Command: INITIALIZE

Syntax: INITIALIZE <init-variable>.

Description: The INITIALIZE command moves SPACES or ZEROS to variable init-variable;

SPACES are moved to the variable if it is defined as alphanumeric (PIC X) and ZEROS

if it has been defined as numeric (PIC 9).

Note that CobolScript automatically initializes all variables that have VALUE clauses;

for this reason, using a VALUE clause is normally preferred to using the INITIALIZE

statement.

Example Usage: INITIALIZE var1.

Sample Program: INIT.CBL

LISTENTOSOCKET

Command: LISTENTOSOCKET

Syntax: LISTENTOSOCKET USING <socket-number> <backlog-queue-length>.

Description: The LISTENTOSOCKET command prepares a socket socket-number to accept an

incoming connection. The backlog-queue-length is the number of incoming connection

requests permitted to queue while accepted connections are processed.

LISTENTOSOCKET should be called prior to using ACCEPTFROMSOCKET.

This command is conventionally used only on the machine that is considered to be the

server in two-way socket connections.

The TCP/IP return code and return message variables are populated with standard

TCP/IP return codes and messages after execution of this command. They can be

examined after command execution for error-trapping purposes.

See the Using TCP/IP Commands section of Chapter 6, Network and Internet

Programming Using CobolScript, for more information on using socket commands.

Example Usage: LISTENTOSOCKET USING socket_num_var backlog_num_var.

The LISTENTOSOCKET command requires that the following TCP/IP variable

declarations be included in your program:

1 TCPIP - RETURN- CODES.

 5 TCPIP - RETURN- CODE PIC 9(07).

 5 TCPIP - RETURN- MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program with a COPY or

INCLUDE statement. This copybook includes these variable definitions.

See Also: ACCEPTFROMSOCKET

BINDSOCKET

CLOSESOCKET

CONNECTTOSOCKET

CREATESOCKET

RECEIVESOCKET

SENDSOCKET

SHUTDOWNSOCKET

Sample Program: SERV.CBL

LOWER

Command: LOWER

Syntax: LOWER <variable>

Description: The LOWER command converts the contents of <variable> to lower case.

Example Usage: LOWER WS- NAME

Page 148 CobolScript® Developerôs Guide

Command: LOWER

See Also: UPPER

Sample Program: LOWER.CBL

LTRIM

Command: LTRIM

Syntax: LTRIM <variable>

Description: The LTRIM command removes leading space characters from <variable>.

Example Usage: LTRIM WS- NAME

See Also: TRIM, RTRIM

Sample Program: TRIM.CBL

MOVE

Command: MOVE

Syntax: MOVE <source-data> TO <target-variable>.

Description: The MOVE statement copies the contents of a literal or variable, source-data, to the

contents of the target-variable.

In the cases of an alphanumeric to alphanumeric, an alphanumeric to numeric, or a

numeric to alphanumeric MOVE, if the length of the source-data contents is greater than

the length of target-variable, target-variable is populated with the source-data

characters from left to right, and the remaining source characters are discarded.

In the case of a numeric to numeric MOVE, if the length of the contents of source-data

is greater than the length of target-variable, target-variable is populated as follows:

¶ Digits to the right of the decimal point are populated in target-variable

from left to right, and remaining digits in the source-data decimal are

discarded, for example:

If var1 is defined as PIC 9.99,
MOVE 5.432 TO var1

will place 5.43 in var1.

¶ Digits to the left of the decimal point are populated in target-variable

from right to left, and remaining higher digits in the source-data are

discarded, for example:

If var1 is defined as PIC 9.99,
MOVE 65.432 TO var1

will place 5.43 in var1.

Besides simple moves, MOVE also allows a group item to be moved to another group

item, or a group item to be moved to an elementary item. MOVE also permits both

source and target variables to use positional string referencing; refer to the section titled

Manipulating CobolScript Variables in Chapter 8 for further details.

Example Usage: Simple MOVE:
MOVE var1 TO var2.

MOVE with positional referencing of source variable:
MOVE var1(1:2) TO var3.

MOVE with positional referencing of target variable:
MOVE `test` TO var5(start_position:length).

See Also: SET

Sample Program: MOVE.CBL

 CobolScript® Developerôs Guide Page 149

MULTIPLY

Command: MULTIPLY

Syntax: Variant 1:

MULTIPLY <number or variable> é BY <target-variable> [ROUNDED]

Variant 2:

MULTIPLY <number or variable> é BY <number or variable> GIVING <target-

variable> [ROUNDED]

Description: Variant 1 of MULTIPLY is used to multiply one or more numeric literals and/or

numeric variables together, storing the result in the numeric target-variable. All literals

and variables are multiplied together to produce the result, including the value in target-

variable prior to the multiplication.

Variant 2 of MULTIPLY is used to multiply one or more numeric literals and/or

variables together, with the result stored in target-variable, whose original contents are

not considered in the multiplication. Thus, if VAR has an initial value of 3, performing

the operation MULTIPLY 2 BY 2 GIVING VAR will place a value of 4, not 12, into

VAR.

Both forms of MULTIPLY permit the use of the ROUNDED keyword, which rounds the

target variable (after computation) to the nearest integer.

Example Usage: Variant 1:
MULTIPLY 2 BY num.

MULTIPLY 2 3 BY num.

MULTIPLY value BY total.
MULTIPLY 1.11 2 value BY total ROUNDED .

Variant 2:
MULTIPLY value BY subtotal GIVING total.

MULTIPLY 2 BY 3 GIVING total ROUNDED.

See Also: COMPUTE

ADD

SUBTRACT

DIVIDE

Sample Program: MULTIPLY.CBL

OPEN

Command: OPEN

Syntax: OPEN <filename> FOR READING [DELIMITED WITH <delimiter-character>].

OPEN <filename> FOR WRITING [DELIMITED WITH <delimiter-character>].

OPEN <filename> FOR APPENDING [DELIMITED WITH <delimiter-character>].

OPEN <filename> FOR UPDATING [DELIMITED WITH <delimiter-character>].

Description: OPEN is used to open a text data file named by the literal or variable filename for

READING, UPDATING, WRITING (which positions the disk head at the beginning of

the file), or APPENDING (which positions the disk head at the end of the file).

The FOR UPDATING clause allows the update records in an existing data file. Use it in

conjunction with the REWRITE statement.

The DELIMITED WITH option treats the delimiter-character (which must be a single

character literal value or variable, or a character keyword such as TAB or SPACE) as the

separator between fields, rather than relying on field lengths to define where record

fields begin and end inside the file (as is the case when DELIMITED WITH is omitted).

The delimiter can be any character that is in the ASCII character set, but remember that

1

1

1

Page 150 CobolScript® Developerôs Guide

Command: OPEN

no delimiter characters may appear inside any of the record fields; otherwise, an

unintended field separation will occur.

For more information on file manipulation, refer to Chapter 4, File Processing and I/O.

Example Usage: OPEN test_file_var FOR READING.

OPEN `TEST.DAT` FOR READING DELIMITED WITH `,`.

OPEN `TEST.DAT` FOR UPDATING DELIMITED WITH TAB.

OPEN test_file_var FOR WRITING.

OPEN test_file_var FOR APPENDING DELIMITED WITH `|`.

OPEN test_file_var FOR UPDATING DELIMITED WITH delim_var.

See Also: CLOSE

FD

POSITION

READ

REWRITE

WRITE

Sample Program: IO.CBL

OPENDB

Command: OPENDB (CobolScript Professional Edition Only)

Syntax: OPENDB USING <data-source-name> <user-id> <password> <return-code-variable>.

Description: The OPENDB command opens a LinkMakerÊ connection to a data source data-source-

name using user-id and password. Upon completion, OPENDB populates return-code-

variable with an integer value of 1 (success) or 0 (failure).

For OPENDB to work correctly, an ODBC driver for the specific data source must be

installed, and a DSN (Data Source Name) must be defined. On Unix platform machines,

UnixODBC must also be installed prior to using any LinkMaker commands.

See Appendix G for more information about configuring LinkMakerÊ data sources and

installing and configuring UnixODBC on Unix platform machines.

Example Usage: OPENDB USING data_source user_id password ret_code.

See Also: CLOSEDB

EXEC SQL

Sample Program: SQL.CBL

PERFORM

Command: PERFORM

Syntax: Variant 1, Standard PERFORM:
PERFORM <module-name>.

Variant 2, PERFORM .. UNTIL:
PERFORM <module-name> UNTIL <condition>.

Variant 3, Inline PERFORM:
PERFORM UNTIL <condition>

 :

 :

END-PERFORM

Description: The basic PERFORM statement has three variants in CobolScript:

 CobolScript® Developerôs Guide Page 151

Command: PERFORM

Variant 1, Standard PERFORM:

The standard PERFORM passes program control to a program module module-name a

single time, and then returns control to the statement following the PERFORM. When

the PERFORM is encountered during program execution, control passes immediately to

the first line of code within module-name. The code within module-name then executes;

after the last statement in module-name has been processed, control is returned to the line

immediately following the PERFORM statement, and program execution continues

normally.

Variant 2, PERFORM .. UNTIL:

PERFORM .. UNTIL is used to pass program control to a program module module-name

multiple times, until condition is satisfied. Execution of the code within module-name is

similar to the standard PERFORM.

When a PERFORM .. UNTIL statement is encountered during program execution,

condition is immediately evaluated; if it evaluates to FALSE, module-name is executed,

and control returns to the beginning of the PERFORM .. UNTIL statement, so that

condition can be evaluated again. If condition evaluates to TRUE, module-name is not

executed, and control passes to the statement following the PERFORM .. UNTIL.

There are two important points to keep in mind when using PERFORM .. UNTIL:

¶ First, remember that condition must evaluate to TRUE in order for control to

be passed to the statement following the PERFORM .. UNTIL; if condition

always evaluates to FALSE, the program will be caught in an endless loop,

repeatedly performing the code in module-name. To avoid this, some of the

code within module-name must change some component of condition, so that

condition will eventually be TRUE.

¶ Second, remember that condition is always evaluated prior to the execution of

module-name. Therefore, if condition evaluates to TRUE the first time that the

PERFORM .. UNTIL is encountered, the code in module-name will never be

performed.

More information on conditions, condition evaluation, and permitted condition syntax is

available in the Command Reference entry for IF, and in the Expressions and Conditions

section in Chapter 3, CobolScript Language Constructs.

Variant 3, Inline PERFORM:

The Inline PERFORM is simply a variation of PERFORM .. UNTIL. Instead of

performing a separate module, however, it executes the code that is between the

PERFORM and END-PERFORM statements multiple times, until condition is satisfied.

Example Usage: Variant 1:
PERFORM INIT.

Variant 2:
PERFORM PROCESSING UNTIL counter = 5.

Variant 3:
PERFORM UNTIL counter = 5

 ADD 1 TO counter

 DISPLAY `counter = ` & counter

END- PERFORM

See Also: IF (for explanation of condition evaluation, PERFORM .. VARYING

Sample Program: PERFORM.CBL

PERFORM .. VARYING

Command: PERFORM .. VARYING

Syntax: Variant 1, Standard PERFORM .. VARYING:

Page 152 CobolScript® Developerôs Guide

Command: PERFORM .. VARYING

PERFORM <module-name> VARYING <varying-variable>

 FROM <from-amount> BY <increment-amount> UNTIL <condition>.

Variant 2, Inline PERFORM VARYING:

PERFORM VARYING <varying-variable>

 FROM <from-amount> BY <increment-amount> UNTIL <condition>

 :

 :

END-PERFORM

Description: PERFORM .. VARYING has two variants in CobolScript:

Variant 1, Standard PERFORM .. VARYING:

The standard PERFORM .. VARYING is used to pass program control to a program

module module-name multiple times, until condition is satisfied, while also incrementing

varying-variable with each call to module-name. Condition evaluation, and the

execution of module-name, are handled in the same way as PERFORM .. UNTIL; see

Variant 2 in the PERFORM command description above for details.

In a PERFORM .. VARYING, the varying-variable is initialized on the first loop pass,

or incremented for every pass other than the first, then condition is evaluated, then

module-name is performed, in that order. This happens as follows:

¶ On the first pass through the PERFORM .. VARYING statement, the

varying-variable is first initialized to from-amount; then, if condition

evaluates to FALSE, the code in module-name is executed, and control

returns to the beginning of the PERFORM .. VARYING. If condition

evaluates to TRUE on the first pass, module-name is not performed.

¶ From the second pass through the PERFORM .. VARYING and all

subsequent passes, varying-variable is first incremented by increment-

amount; if condition evaluates to FALSE, module-name is performed, and

control returns to the beginning of the PERFORM .. VARYING. If

condition evaluates to TRUE, control passes to the statement following

the PERFORM .. VARYING.

Increment-amount can be any nonzero number or numeric variable; to decrement the

varying-variable rather than increment it, use a negative value for increment-amount.

More information on conditions, condition evaluation, and permitted condition syntax is

available in the Command Reference entry for IF, and in the Expressions and Conditions

section in Chapter 3, CobolScript Language Constructs.

Variant 2, Inline PERFORM VARYING:

The Inline PERFORM VARYING is a variation of PERFORM .. VARYING. Instead

of performing a separate module, however, it executes the code that is between the

PERFORM and END-PERFORM statements multiple times, until condition is satisfied.

Example Usage: Variant 1:
PERFORM PROCESSING

 VARYING varying_nbr

 FROM 5 BY ï1

 UNTIL varying_nbr = 0.

Variant 2:
PERFORM VARYING varying_nbr

 FROM 10 BY 2 UNTIL SQRT(varying_nbr)>=4

 DISPLAY `varying_nbr = ` & varying_nbr

END- PERFORM

 CobolScript® Developerôs Guide Page 153

Command: PERFORM .. VARYING

See Also: IF (for explanation of condition evaluation), PERFORM.

Sample Program: PERFORM.CBL

POSITION

Command: POSITION

Syntax: Variant 1, Absolute POSITION:

POSITION <filename> AT RECORD <record-number>.

Variant 2, Relative POSITION:

POSITION <filename> RELATIVE OFFSET <number-of-records>.

Description: The POSITION statement positions the file pointer in filename at the beginning of a

particular record within a text data file in a single step.

POSITION can be used to simulate an indexing system within flat files; if a data file uses

a sequential numeric value as the record key value, a record within the file can be

randomly (directly) accessed given that key value. This functionality is similar to

COBOL relative file processing.

When using the POSITION statement, the number of bytes specified in the BYTES

clause of the FD statement for your file must exactly match the number of bytes in the

data file record; this value is used to reposition the file pointer, and a BYTES value that

is larger or smaller than the actual data record size will cause the file pointer to be

incorrectly positioned.

Variant 1, Absolute POSITION:

The absolute POSITION moves the file pointer directly to the beginning of the record at

record-number, which must be a numeric literal or variable. The first record in the file is

considered to be record number 1; therefore, record-number must be a positive integer,

and its value must fall within the range:

(1 <= record-number <= total number of records in file)

The record-number value (and hence the number of records in your data file) cannot

exceed 2,147,483,647 (2.1 billion).

Variant 2, Relative POSITION:

The relative POSITION moves the file pointer relative to its current position. Number-

of-records must be an integer-valued numeric literal or variable. This value indicates the

number of records, counting from the current record, that the file pointer should be

moved. Thus, a value of 1 will shift the file pointer one record forward in the data file; a

value of ï1 will shift the file pointer one record back. The value of number-of-records

must fall within the absolute range:

(-2,147,483,647 <= number-of-records <= 2,147,483,647)

A number-of-records value that causes the file pointer to be positioned before the

beginning of the data file or after the end of the data file will cause a CobolScript error.

When using relative POSITION, keep in mind that certain file operations such as READ,

WRITE, and REWRITE will advance the file pointer by one record. Thus, in the

following code, the second READ statement will read the eighth record in the file, not

the seventh, because the first READ and the second POSITION advance the file pointer

by one record each:

POSITION file_name AT RECORD 6.

READ file_name INTO record_var.

1

